add files
This commit is contained in:
812
unsloth_compiled_cache/UnslothRewardTrainer.py
Normal file
812
unsloth_compiled_cache/UnslothRewardTrainer.py
Normal file
@@ -0,0 +1,812 @@
|
||||
"""
|
||||
2025.6.1
|
||||
2025.6.2
|
||||
4.52.4
|
||||
0.18.2
|
||||
__UNSLOTH_VERSIONING__
|
||||
"""
|
||||
from torch import Tensor
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch.nn import functional as F
|
||||
from trl.trainer.reward_trainer import (Any, BaseImageProcessor, Callable, DataCollator, Dataset, EvalPrediction, FeatureExtractionMixin, FrozenInstanceError, Optional, PartialState, PeftModel, PreTrainedModel, PreTrainedTokenizerBase, ProcessorMixin, RewardConfig, RewardDataCollatorWithPadding, RewardTrainer, Trainer, TrainerCallback, Union, _tokenize, compute_accuracy, decode_and_strip_padding, defaultdict, disable_dropout_in_model, gather_object, generate_model_card, get_comet_experiment_url, inspect, is_peft_available, is_rich_available, is_wandb_available, log_table_to_comet_experiment, maybe_apply_chat_template, nested_detach, nn, os, pd, prepare_model_for_kbit_training, print_rich_table, replace, torch, warnings)
|
||||
|
||||
|
||||
import os
|
||||
from typing import *
|
||||
from dataclasses import dataclass, field
|
||||
from packaging.version import Version
|
||||
import torch
|
||||
import numpy as np
|
||||
from contextlib import nullcontext
|
||||
from torch.nn import functional as F
|
||||
from transformers import DataCollatorForSeq2Seq, DataCollatorForLanguageModeling as TransformersDataCollatorForLanguageModeling
|
||||
|
||||
torch_compile_options = {
|
||||
"epilogue_fusion" : True,
|
||||
"max_autotune" : False,
|
||||
"shape_padding" : True,
|
||||
"trace.enabled" : False,
|
||||
"triton.cudagraphs" : False,
|
||||
}
|
||||
|
||||
@torch.compile(dynamic = True, fullgraph = True, options = torch_compile_options,)
|
||||
def selective_log_softmax(logits, index):
|
||||
logits = logits.to(torch.float32)
|
||||
selected_logits = torch.gather(logits, dim = -1, index = index.unsqueeze(-1)).squeeze(-1)
|
||||
# loop to reduce peak mem consumption
|
||||
# logsumexp_values = torch.stack([torch.logsumexp(lg, dim=-1) for lg in logits])
|
||||
logsumexp_values = torch.logsumexp(logits, dim = -1)
|
||||
per_token_logps = selected_logits - logsumexp_values # log_softmax(x_i) = x_i - logsumexp(x)
|
||||
return per_token_logps
|
||||
@dataclass
|
||||
class UnslothRewardConfig(RewardConfig):
|
||||
"""
|
||||
|
||||
Configuration class for the [`RewardTrainer`].
|
||||
|
||||
Using [`~transformers.HfArgumentParser`] we can turn this class into
|
||||
[argparse](https://docs.python.org/3/library/argparse#module-argparse) arguments that can be specified on the
|
||||
command line.
|
||||
|
||||
Parameters:
|
||||
max_length (`int` or `None`, *optional*, defaults to `1024`):
|
||||
Maximum length of the sequences (prompt + completion) in the batch, filters out entries that exceed the
|
||||
limit. This argument is required if you want to use the default data collator.
|
||||
disable_dropout (`bool`, *optional*, defaults to `True`):
|
||||
Whether to disable dropout in the model.
|
||||
dataset_num_proc (`int`, *optional*, defaults to `None`):
|
||||
Number of processes to use for processing the dataset.
|
||||
center_rewards_coefficient (`float`, *optional*, defaults to `None`):
|
||||
Coefficient to incentivize the reward model to output mean-zero rewards (proposed by
|
||||
https://huggingface.co/papers/2312.09244, Eq. 2). Recommended value: `0.01`.
|
||||
remove_unused_columns (`bool`, *optional*, defaults to `False`):
|
||||
Whether to remove the columns that are not used by the model's forward pass. Can be `True` only if
|
||||
the dataset is pretokenized.
|
||||
|
||||
"""
|
||||
vllm_sampling_params: Optional[Any] = field(
|
||||
default = None,
|
||||
metadata = {'help': 'vLLM SamplingParams'},
|
||||
)
|
||||
unsloth_num_chunks : Optional[int] = field(
|
||||
default = -1,
|
||||
metadata = {'help': 'Chunk size to reduce memory usage. -1 is most efficient.'},
|
||||
)
|
||||
def __init__(
|
||||
self,
|
||||
output_dir = None,
|
||||
overwrite_output_dir = None,
|
||||
do_train = False,
|
||||
do_eval = False,
|
||||
do_predict = False,
|
||||
eval_strategy = 'no',
|
||||
prediction_loss_only = False,
|
||||
per_device_train_batch_size = 4,
|
||||
per_device_eval_batch_size = 4,
|
||||
per_gpu_train_batch_size = None,
|
||||
per_gpu_eval_batch_size = None,
|
||||
gradient_accumulation_steps = 2,
|
||||
eval_accumulation_steps = 2,
|
||||
eval_delay = 0,
|
||||
torch_empty_cache_steps = 250,
|
||||
learning_rate = 5e-05,
|
||||
weight_decay = 0.01,
|
||||
adam_beta1 = 0.9,
|
||||
adam_beta2 = 0.999,
|
||||
adam_epsilon = 1e-08,
|
||||
max_grad_norm = 1.0,
|
||||
num_train_epochs = 3.0,
|
||||
max_steps = -1,
|
||||
lr_scheduler_type = 'linear',
|
||||
warmup_ratio = 0.1,
|
||||
warmup_steps = 0,
|
||||
log_level = 'passive',
|
||||
log_level_replica = 'warning',
|
||||
log_on_each_node = True,
|
||||
logging_dir = None,
|
||||
logging_strategy = 'steps',
|
||||
logging_first_step = False,
|
||||
logging_steps = 1,
|
||||
logging_nan_inf_filter = False,
|
||||
save_strategy = 'steps',
|
||||
save_steps = 500,
|
||||
save_total_limit = None,
|
||||
save_safetensors = True,
|
||||
save_on_each_node = False,
|
||||
save_only_model = False,
|
||||
restore_callback_states_from_checkpoint = False,
|
||||
no_cuda = False,
|
||||
use_cpu = False,
|
||||
use_mps_device = False,
|
||||
seed = 3407,
|
||||
data_seed = 3407,
|
||||
jit_mode_eval = False,
|
||||
use_ipex = False,
|
||||
bf16 = False,
|
||||
fp16 = False,
|
||||
fp16_opt_level = 'O1',
|
||||
half_precision_backend = 'auto',
|
||||
bf16_full_eval = False,
|
||||
fp16_full_eval = False,
|
||||
tf32 = None,
|
||||
local_rank = -1,
|
||||
ddp_backend = None,
|
||||
tpu_num_cores = None,
|
||||
tpu_metrics_debug = False,
|
||||
debug = '',
|
||||
dataloader_drop_last = False,
|
||||
eval_steps = None,
|
||||
dataloader_num_workers = 0,
|
||||
dataloader_prefetch_factor = None,
|
||||
past_index = -1,
|
||||
run_name = None,
|
||||
disable_tqdm = None,
|
||||
remove_unused_columns = False,
|
||||
label_names = None,
|
||||
load_best_model_at_end = False,
|
||||
metric_for_best_model = None,
|
||||
greater_is_better = None,
|
||||
ignore_data_skip = False,
|
||||
fsdp = '',
|
||||
fsdp_min_num_params = 0,
|
||||
fsdp_config = None,
|
||||
fsdp_transformer_layer_cls_to_wrap = None,
|
||||
accelerator_config = None,
|
||||
deepspeed = None,
|
||||
label_smoothing_factor = 0.0,
|
||||
optim = 'adamw_8bit',
|
||||
optim_args = None,
|
||||
adafactor = False,
|
||||
group_by_length = False,
|
||||
length_column_name = 'length',
|
||||
report_to = None,
|
||||
ddp_find_unused_parameters = None,
|
||||
ddp_bucket_cap_mb = None,
|
||||
ddp_broadcast_buffers = None,
|
||||
dataloader_pin_memory = True,
|
||||
dataloader_persistent_workers = False,
|
||||
skip_memory_metrics = True,
|
||||
use_legacy_prediction_loop = False,
|
||||
push_to_hub = False,
|
||||
resume_from_checkpoint = None,
|
||||
hub_model_id = None,
|
||||
hub_strategy = 'every_save',
|
||||
hub_token = None,
|
||||
hub_private_repo = None,
|
||||
hub_always_push = False,
|
||||
gradient_checkpointing = False,
|
||||
gradient_checkpointing_kwargs = None,
|
||||
include_inputs_for_metrics = False,
|
||||
eval_do_concat_batches = True,
|
||||
fp16_backend = 'auto',
|
||||
push_to_hub_model_id = None,
|
||||
push_to_hub_organization = None,
|
||||
push_to_hub_token = None,
|
||||
mp_parameters = '',
|
||||
auto_find_batch_size = False,
|
||||
full_determinism = False,
|
||||
torchdynamo = None,
|
||||
ray_scope = 'last',
|
||||
ddp_timeout = 1800,
|
||||
torch_compile = False,
|
||||
torch_compile_backend = None,
|
||||
torch_compile_mode = None,
|
||||
include_tokens_per_second = False,
|
||||
include_num_input_tokens_seen = False,
|
||||
neftune_noise_alpha = None,
|
||||
optim_target_modules = None,
|
||||
batch_eval_metrics = False,
|
||||
eval_on_start = False,
|
||||
use_liger_kernel = False,
|
||||
eval_use_gather_object = False,
|
||||
average_tokens_across_devices = False,
|
||||
max_length = 1024,
|
||||
disable_dropout = True,
|
||||
dataset_num_proc = None,
|
||||
center_rewards_coefficient = None,
|
||||
vllm_sampling_params = None,
|
||||
unsloth_num_chunks = -1,
|
||||
**kwargs,
|
||||
):
|
||||
if learning_rate < 1e-7: raise FloatingPointError(f'Unsloth: Your learning rate of `{learning_rate}` is too small and less than 1e-7! Consider increasing it, otherwise gradient updates will be close to 0!')
|
||||
if learning_rate > 1: raise OverflowError(f'Unsloth: Your learning rate of `{learning_rate}` is way too larger > 1! Consider decreasing it to 1e-1, otherwise gradient updates will explode!')
|
||||
if output_dir is None and save_strategy == 'steps' and save_steps == 500:
|
||||
output_dir = 'unsloth_training_checkpoints'
|
||||
save_strategy = 'no'
|
||||
if dataset_num_proc is None:
|
||||
from multiprocessing import cpu_count
|
||||
dataset_num_proc = cpu_count()
|
||||
|
||||
super().__init__(
|
||||
output_dir = output_dir,
|
||||
overwrite_output_dir = overwrite_output_dir,
|
||||
do_train = do_train,
|
||||
do_eval = do_eval,
|
||||
do_predict = do_predict,
|
||||
eval_strategy = eval_strategy,
|
||||
prediction_loss_only = prediction_loss_only,
|
||||
per_device_train_batch_size = per_device_train_batch_size,
|
||||
per_device_eval_batch_size = per_device_eval_batch_size,
|
||||
per_gpu_train_batch_size = per_gpu_train_batch_size,
|
||||
per_gpu_eval_batch_size = per_gpu_eval_batch_size,
|
||||
gradient_accumulation_steps = gradient_accumulation_steps,
|
||||
eval_accumulation_steps = eval_accumulation_steps,
|
||||
eval_delay = eval_delay,
|
||||
torch_empty_cache_steps = torch_empty_cache_steps,
|
||||
learning_rate = learning_rate,
|
||||
weight_decay = weight_decay,
|
||||
adam_beta1 = adam_beta1,
|
||||
adam_beta2 = adam_beta2,
|
||||
adam_epsilon = adam_epsilon,
|
||||
max_grad_norm = max_grad_norm,
|
||||
num_train_epochs = num_train_epochs,
|
||||
max_steps = max_steps,
|
||||
lr_scheduler_type = lr_scheduler_type,
|
||||
warmup_ratio = warmup_ratio,
|
||||
warmup_steps = warmup_steps,
|
||||
log_level = log_level,
|
||||
log_level_replica = log_level_replica,
|
||||
log_on_each_node = log_on_each_node,
|
||||
logging_dir = logging_dir,
|
||||
logging_strategy = logging_strategy,
|
||||
logging_first_step = logging_first_step,
|
||||
logging_steps = logging_steps,
|
||||
logging_nan_inf_filter = logging_nan_inf_filter,
|
||||
save_strategy = save_strategy,
|
||||
save_steps = save_steps,
|
||||
save_total_limit = save_total_limit,
|
||||
save_safetensors = save_safetensors,
|
||||
save_on_each_node = save_on_each_node,
|
||||
save_only_model = save_only_model,
|
||||
restore_callback_states_from_checkpoint = restore_callback_states_from_checkpoint,
|
||||
no_cuda = no_cuda,
|
||||
use_cpu = use_cpu,
|
||||
use_mps_device = use_mps_device,
|
||||
seed = seed,
|
||||
data_seed = data_seed,
|
||||
jit_mode_eval = jit_mode_eval,
|
||||
use_ipex = use_ipex,
|
||||
bf16 = bf16,
|
||||
fp16 = fp16,
|
||||
fp16_opt_level = fp16_opt_level,
|
||||
half_precision_backend = half_precision_backend,
|
||||
bf16_full_eval = bf16_full_eval,
|
||||
fp16_full_eval = fp16_full_eval,
|
||||
tf32 = tf32,
|
||||
local_rank = local_rank,
|
||||
ddp_backend = ddp_backend,
|
||||
tpu_num_cores = tpu_num_cores,
|
||||
tpu_metrics_debug = tpu_metrics_debug,
|
||||
debug = debug,
|
||||
dataloader_drop_last = dataloader_drop_last,
|
||||
eval_steps = eval_steps,
|
||||
dataloader_num_workers = dataloader_num_workers,
|
||||
dataloader_prefetch_factor = dataloader_prefetch_factor,
|
||||
past_index = past_index,
|
||||
run_name = run_name,
|
||||
disable_tqdm = disable_tqdm,
|
||||
remove_unused_columns = remove_unused_columns,
|
||||
label_names = label_names,
|
||||
load_best_model_at_end = load_best_model_at_end,
|
||||
metric_for_best_model = metric_for_best_model,
|
||||
greater_is_better = greater_is_better,
|
||||
ignore_data_skip = ignore_data_skip,
|
||||
fsdp = fsdp,
|
||||
fsdp_min_num_params = fsdp_min_num_params,
|
||||
fsdp_config = fsdp_config,
|
||||
fsdp_transformer_layer_cls_to_wrap = fsdp_transformer_layer_cls_to_wrap,
|
||||
accelerator_config = accelerator_config,
|
||||
deepspeed = deepspeed,
|
||||
label_smoothing_factor = label_smoothing_factor,
|
||||
optim = optim,
|
||||
optim_args = optim_args,
|
||||
adafactor = adafactor,
|
||||
group_by_length = group_by_length,
|
||||
length_column_name = length_column_name,
|
||||
report_to = report_to,
|
||||
ddp_find_unused_parameters = ddp_find_unused_parameters,
|
||||
ddp_bucket_cap_mb = ddp_bucket_cap_mb,
|
||||
ddp_broadcast_buffers = ddp_broadcast_buffers,
|
||||
dataloader_pin_memory = dataloader_pin_memory,
|
||||
dataloader_persistent_workers = dataloader_persistent_workers,
|
||||
skip_memory_metrics = skip_memory_metrics,
|
||||
use_legacy_prediction_loop = use_legacy_prediction_loop,
|
||||
push_to_hub = push_to_hub,
|
||||
resume_from_checkpoint = resume_from_checkpoint,
|
||||
hub_model_id = hub_model_id,
|
||||
hub_strategy = hub_strategy,
|
||||
hub_token = hub_token,
|
||||
hub_private_repo = hub_private_repo,
|
||||
hub_always_push = hub_always_push,
|
||||
gradient_checkpointing = gradient_checkpointing,
|
||||
gradient_checkpointing_kwargs = gradient_checkpointing_kwargs,
|
||||
include_inputs_for_metrics = include_inputs_for_metrics,
|
||||
eval_do_concat_batches = eval_do_concat_batches,
|
||||
fp16_backend = fp16_backend,
|
||||
push_to_hub_model_id = push_to_hub_model_id,
|
||||
push_to_hub_organization = push_to_hub_organization,
|
||||
push_to_hub_token = push_to_hub_token,
|
||||
mp_parameters = mp_parameters,
|
||||
auto_find_batch_size = auto_find_batch_size,
|
||||
full_determinism = full_determinism,
|
||||
torchdynamo = torchdynamo,
|
||||
ray_scope = ray_scope,
|
||||
ddp_timeout = ddp_timeout,
|
||||
torch_compile = torch_compile,
|
||||
torch_compile_backend = torch_compile_backend,
|
||||
torch_compile_mode = torch_compile_mode,
|
||||
include_tokens_per_second = include_tokens_per_second,
|
||||
include_num_input_tokens_seen = include_num_input_tokens_seen,
|
||||
neftune_noise_alpha = neftune_noise_alpha,
|
||||
optim_target_modules = optim_target_modules,
|
||||
batch_eval_metrics = batch_eval_metrics,
|
||||
eval_on_start = eval_on_start,
|
||||
use_liger_kernel = use_liger_kernel,
|
||||
eval_use_gather_object = eval_use_gather_object,
|
||||
average_tokens_across_devices = average_tokens_across_devices,
|
||||
max_length = max_length,
|
||||
disable_dropout = disable_dropout,
|
||||
dataset_num_proc = dataset_num_proc,
|
||||
center_rewards_coefficient = center_rewards_coefficient,**kwargs)
|
||||
self.vllm_sampling_params = vllm_sampling_params
|
||||
self.unsloth_num_chunks = unsloth_num_chunks
|
||||
pass
|
||||
|
||||
class _UnslothRewardTrainer(Trainer):
|
||||
_tag_names = ["trl", "reward-trainer"]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model: Optional[Union[PreTrainedModel, nn.Module]] = None,
|
||||
args: Optional[RewardConfig] = None,
|
||||
data_collator: Optional[DataCollator] = None,
|
||||
train_dataset: Optional[Dataset] = None,
|
||||
eval_dataset: Optional[Union[Dataset, dict[str, Dataset]]] = None,
|
||||
processing_class: Optional[
|
||||
Union[PreTrainedTokenizerBase, BaseImageProcessor, FeatureExtractionMixin, ProcessorMixin]
|
||||
] = None,
|
||||
model_init: Optional[Callable[[], PreTrainedModel]] = None,
|
||||
compute_metrics: Optional[Callable[[EvalPrediction], dict]] = None,
|
||||
callbacks: Optional[list[TrainerCallback]] = None,
|
||||
optimizers: tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (
|
||||
None,
|
||||
None,
|
||||
),
|
||||
preprocess_logits_for_metrics: Optional[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = None,
|
||||
peft_config: Optional[dict] = None,
|
||||
):
|
||||
"""
|
||||
Initialize RewardTrainer.
|
||||
|
||||
Args:
|
||||
model (`transformers.PreTrainedModel`):
|
||||
The model to train, preferably an `AutoModelForSequenceClassification`.
|
||||
args (`RewardConfig`):
|
||||
The arguments to use for training.
|
||||
data_collator (`transformers.DataCollator`):
|
||||
The data collator to use for training. If None is specified, the default data collator (`RewardDataCollatorWithPadding`) will be used
|
||||
which will pad the sequences to the maximum length of the sequences in the batch, given a dataset of paired sequences.
|
||||
train_dataset (`datasets.Dataset`):
|
||||
The dataset to use for training.
|
||||
eval_dataset (`datasets.Dataset`):
|
||||
The dataset to use for evaluation.
|
||||
processing_class (`PreTrainedTokenizerBase` or `BaseImageProcessor` or `FeatureExtractionMixin` or `ProcessorMixin`, *optional*):
|
||||
Processing class used to process the data. If provided, will be used to automatically process the inputs
|
||||
for the model, and it will be saved along the model to make it easier to rerun an interrupted training or
|
||||
reuse the fine-tuned model.
|
||||
model_init (`Callable[[], transformers.PreTrainedModel]`):
|
||||
The model initializer to use for training. If None is specified, the default model initializer will be used.
|
||||
compute_metrics (`Callable[[transformers.EvalPrediction], dict]`, *optional* defaults to `compute_accuracy`):
|
||||
The metrics to use for evaluation. If no metrics are specified, the default metric (`compute_accuracy`) will be used.
|
||||
callbacks (`list[transformers.TrainerCallback]`):
|
||||
The callbacks to use for training.
|
||||
optimizers (`tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR]`):
|
||||
The optimizer and scheduler to use for training.
|
||||
preprocess_logits_for_metrics (`Callable[[torch.Tensor, torch.Tensor], torch.Tensor]`):
|
||||
The function to use to preprocess the logits before computing the metrics.
|
||||
peft_config (`dict`, defaults to `None`):
|
||||
The PEFT configuration to use for training. If you pass a PEFT configuration, the model will be wrapped in a PEFT model.
|
||||
"""
|
||||
if not is_peft_available() and peft_config is not None:
|
||||
raise ValueError(
|
||||
"PEFT is not installed and you passed a `peft_config` in the trainer's kwargs, please install it to use the PEFT models"
|
||||
)
|
||||
elif is_peft_available() and peft_config is not None:
|
||||
if not isinstance(model, PeftModel):
|
||||
if getattr(model, "is_loaded_in_8bit", False) or getattr(model, "is_quantized", False):
|
||||
_supports_gc_kwargs = "gradient_checkpointing_kwargs" in list(
|
||||
inspect.signature(prepare_model_for_kbit_training).parameters
|
||||
)
|
||||
|
||||
prepare_model_kwargs = {"use_gradient_checkpointing": args.gradient_checkpointing}
|
||||
|
||||
if not _supports_gc_kwargs and args.gradient_checkpointing_kwargs is not None:
|
||||
warnings.warn(
|
||||
"You passed `gradient_checkpointing_kwargs` in the trainer's kwargs, but your peft version does not support it. "
|
||||
"please update to the latest version of peft to use `gradient_checkpointing_kwargs`.",
|
||||
UserWarning,
|
||||
)
|
||||
elif _supports_gc_kwargs and args.gradient_checkpointing_kwargs is not None:
|
||||
prepare_model_kwargs["gradient_checkpointing_kwargs"] = args.gradient_checkpointing_kwargs
|
||||
|
||||
model = prepare_model_for_kbit_training(model, **prepare_model_kwargs)
|
||||
|
||||
model = model
|
||||
|
||||
# Disable dropout in the model
|
||||
if args.disable_dropout:
|
||||
disable_dropout_in_model(model)
|
||||
|
||||
if compute_metrics is None:
|
||||
compute_metrics = compute_accuracy
|
||||
|
||||
if data_collator is None:
|
||||
if processing_class is None:
|
||||
raise ValueError(
|
||||
"A processing_class must be specified when using the default RewardDataCollatorWithPadding"
|
||||
)
|
||||
|
||||
max_length = args.max_length
|
||||
|
||||
data_collator = RewardDataCollatorWithPadding(processing_class)
|
||||
|
||||
if args.remove_unused_columns:
|
||||
try: # for bc before https://github.com/huggingface/transformers/pull/25435
|
||||
args.remove_unused_columns = False
|
||||
except FrozenInstanceError:
|
||||
args = replace(args, remove_unused_columns=False)
|
||||
# warn users
|
||||
warnings.warn(
|
||||
"When using RewardDataCollatorWithPadding, you should set `remove_unused_columns=False` in your RewardConfig"
|
||||
" we have set it for you, but you should do it yourself in the future.",
|
||||
UserWarning,
|
||||
)
|
||||
|
||||
self.use_reward_data_collator = True
|
||||
else:
|
||||
self.use_reward_data_collator = False
|
||||
|
||||
# The trainer estimates the number of FLOPs (floating-point operations) using the number of elements in the
|
||||
# input tensor associated with the key "input_ids". However, in Reward, the sampled data does not include the
|
||||
# "input_ids" key. Instead, the available keys are "input_ids_chosen" and "input_ids_rejected". As a result,
|
||||
# the trainer issues the warning: "Could not estimate the number of tokens of the input, floating-point
|
||||
# operations will not be computed." To suppress this warning, we set the "estimate_tokens" key in the model's
|
||||
# "warnings_issued" dictionary to True. This acts as a flag to indicate that the warning has already been
|
||||
# issued.
|
||||
model.warnings_issued["estimate_tokens"] = True
|
||||
|
||||
if "input_ids_chosen" not in train_dataset.column_names:
|
||||
with PartialState().main_process_first():
|
||||
fn_kwargs = {"tokenizer": processing_class}
|
||||
train_dataset = train_dataset.map(maybe_apply_chat_template, fn_kwargs={"tokenizer": processing_class})
|
||||
train_dataset = train_dataset.map(
|
||||
_tokenize,
|
||||
batched=True,
|
||||
fn_kwargs=fn_kwargs,
|
||||
num_proc=args.dataset_num_proc,
|
||||
)
|
||||
# This filter is important because otherwise you get samples that exceed the model's context length and
|
||||
# get truncated => noisy signal the chosen/rejected label gets lost. The downside is that the
|
||||
# user might get surprised if N samples are missing from training.
|
||||
train_dataset = train_dataset.filter(
|
||||
lambda x: len(x["input_ids_chosen"]) <= max_length and len(x["input_ids_rejected"]) <= max_length,
|
||||
num_proc=args.dataset_num_proc,
|
||||
)
|
||||
if eval_dataset is not None:
|
||||
eval_dataset = eval_dataset.map(
|
||||
maybe_apply_chat_template, fn_kwargs={"tokenizer": processing_class}
|
||||
)
|
||||
eval_dataset = eval_dataset.map(
|
||||
_tokenize,
|
||||
fn_kwargs=fn_kwargs,
|
||||
batched=True,
|
||||
num_proc=args.dataset_num_proc,
|
||||
)
|
||||
# This filter is important because otherwise you get samples that exceed the model's context length and
|
||||
# get truncated => noisy signal the chosen/rejected label gets lost. The downside is that the
|
||||
# user might get surprised if N samples are missing from training.
|
||||
eval_dataset = eval_dataset.filter(
|
||||
lambda x: len(x["input_ids_chosen"]) <= max_length
|
||||
and len(x["input_ids_rejected"]) <= max_length,
|
||||
num_proc=args.dataset_num_proc,
|
||||
)
|
||||
|
||||
super().__init__(
|
||||
model=model,
|
||||
args=args,
|
||||
data_collator=data_collator,
|
||||
train_dataset=train_dataset,
|
||||
eval_dataset=eval_dataset,
|
||||
processing_class=processing_class,
|
||||
model_init=model_init,
|
||||
compute_metrics=compute_metrics,
|
||||
callbacks=callbacks,
|
||||
optimizers=optimizers,
|
||||
preprocess_logits_for_metrics=preprocess_logits_for_metrics,
|
||||
)
|
||||
|
||||
# Add tags for models that have been loaded with the correct transformers version
|
||||
if hasattr(self.model, "add_model_tags"):
|
||||
self.model.add_model_tags(self._tag_names)
|
||||
|
||||
def compute_loss(
|
||||
self,
|
||||
model: Union[PreTrainedModel, nn.Module],
|
||||
inputs: dict[str, Union[torch.Tensor, Any]],
|
||||
return_outputs=False,
|
||||
num_items_in_batch=None,
|
||||
) -> Union[torch.Tensor, tuple[torch.Tensor, dict[str, torch.Tensor]]]:
|
||||
rewards_chosen = model(
|
||||
input_ids=inputs["input_ids_chosen"],
|
||||
attention_mask=inputs["attention_mask_chosen"],
|
||||
return_dict=True,
|
||||
)["logits"]
|
||||
rewards_rejected = model(
|
||||
input_ids=inputs["input_ids_rejected"],
|
||||
attention_mask=inputs["attention_mask_rejected"],
|
||||
return_dict=True,
|
||||
)["logits"]
|
||||
# calculate loss, optionally modulate with margin
|
||||
if "margin" in inputs:
|
||||
loss = -nn.functional.logsigmoid(rewards_chosen - rewards_rejected - inputs["margin"]).mean()
|
||||
else:
|
||||
loss = -nn.functional.logsigmoid(rewards_chosen - rewards_rejected).mean()
|
||||
|
||||
if self.args.center_rewards_coefficient is not None:
|
||||
loss += self.args.center_rewards_coefficient * torch.mean((rewards_chosen + rewards_rejected) ** 2)
|
||||
|
||||
if return_outputs:
|
||||
return loss, {
|
||||
"rewards_chosen": rewards_chosen,
|
||||
"rewards_rejected": rewards_rejected,
|
||||
}
|
||||
return loss
|
||||
|
||||
def prediction_step(
|
||||
self,
|
||||
model: Union[PreTrainedModel, nn.Module],
|
||||
inputs: dict[str, Union[torch.Tensor, Any]],
|
||||
prediction_loss_only: bool,
|
||||
ignore_keys: Optional[list[str]] = None,
|
||||
) -> tuple[Optional[torch.Tensor], Optional[torch.Tensor], Optional[torch.Tensor]]:
|
||||
inputs = self._prepare_inputs(inputs)
|
||||
if ignore_keys is None:
|
||||
if hasattr(self.model, "config"):
|
||||
ignore_keys = getattr(self.model.config, "keys_to_ignore_at_inference", [])
|
||||
else:
|
||||
ignore_keys = []
|
||||
|
||||
with torch.no_grad():
|
||||
loss, logits_dict = self.compute_loss(model, inputs, return_outputs=True)
|
||||
|
||||
if prediction_loss_only:
|
||||
return (loss, None, None)
|
||||
|
||||
loss = loss.detach()
|
||||
logits = tuple(v for k, v in logits_dict.items() if k not in ignore_keys)
|
||||
logits = nested_detach(logits)
|
||||
# Stack accepted against rejected, mean over logits
|
||||
# and softmax to get preferences between accepted and rejected to sum to 1
|
||||
logits = torch.stack(logits).mean(dim=2).softmax(dim=0).T
|
||||
|
||||
labels = torch.zeros(logits.shape[0])
|
||||
labels = self._prepare_inputs(labels)
|
||||
|
||||
return loss, logits, labels
|
||||
|
||||
def evaluate(self, *args, **kwargs):
|
||||
num_print_samples = kwargs.pop("num_print_samples", 4)
|
||||
self.visualize_samples(num_print_samples)
|
||||
return super().evaluate(*args, **kwargs)
|
||||
|
||||
def visualize_samples(self, num_print_samples: int):
|
||||
"""
|
||||
Visualize the reward model logits prediction
|
||||
|
||||
Args:
|
||||
num_print_samples (`int`, defaults to `4`):
|
||||
The number of samples to print. Set to `-1` to print all samples.
|
||||
"""
|
||||
eval_dataloader = self.get_eval_dataloader()
|
||||
table = defaultdict(list)
|
||||
for _, inputs in enumerate(eval_dataloader):
|
||||
_, logits, _ = self.prediction_step(self.model, inputs, prediction_loss_only=False)
|
||||
chosen_text = decode_and_strip_padding(inputs["input_ids_chosen"], self.processing_class)
|
||||
rejected_text = decode_and_strip_padding(inputs["input_ids_rejected"], self.processing_class)
|
||||
table["chosen_text"].extend(gather_object(chosen_text))
|
||||
table["rejected_text"].extend(gather_object(rejected_text))
|
||||
table["logits"].extend(
|
||||
gather_object([[round(inner_item, 4) for inner_item in item] for item in logits.tolist()])
|
||||
)
|
||||
if num_print_samples >= 0 and len(table["chosen_text"]) >= num_print_samples:
|
||||
break
|
||||
df = pd.DataFrame(table)
|
||||
if self.accelerator.process_index == 0:
|
||||
if is_rich_available():
|
||||
print_rich_table(df[:num_print_samples])
|
||||
if "wandb" in self.args.report_to:
|
||||
import wandb
|
||||
|
||||
if wandb.run is not None:
|
||||
wandb.log({"completions": wandb.Table(dataframe=df)})
|
||||
|
||||
if "comet_ml" in self.args.report_to:
|
||||
log_table_to_comet_experiment(
|
||||
name="completions.csv",
|
||||
table=df,
|
||||
)
|
||||
|
||||
def create_model_card(
|
||||
self,
|
||||
model_name: Optional[str] = None,
|
||||
dataset_name: Optional[str] = None,
|
||||
tags: Union[str, list[str], None] = None,
|
||||
):
|
||||
"""
|
||||
Creates a draft of a model card using the information available to the `Trainer`.
|
||||
|
||||
Args:
|
||||
model_name (`str` or `None`, *optional*, defaults to `None`):
|
||||
Name of the model.
|
||||
dataset_name (`str` or `None`, *optional*, defaults to `None`):
|
||||
Name of the dataset used for training.
|
||||
tags (`str`, `list[str]` or `None`, *optional*, defaults to `None`):
|
||||
Tags to be associated with the model card.
|
||||
"""
|
||||
if not self.is_world_process_zero():
|
||||
return
|
||||
|
||||
if hasattr(self.model.config, "_name_or_path") and not os.path.isdir(self.model.config._name_or_path):
|
||||
base_model = self.model.config._name_or_path
|
||||
else:
|
||||
base_model = None
|
||||
|
||||
tags = tags or []
|
||||
if isinstance(tags, str):
|
||||
tags = [tags]
|
||||
|
||||
if hasattr(self.model.config, "unsloth_version"):
|
||||
tags.append("unsloth")
|
||||
|
||||
model_card = generate_model_card(
|
||||
base_model=base_model,
|
||||
model_name=model_name,
|
||||
hub_model_id=self.hub_model_id,
|
||||
dataset_name=dataset_name,
|
||||
tags=tags,
|
||||
wandb_url=wandb.run.get_url() if is_wandb_available() and wandb.run is not None else None,
|
||||
comet_url=get_comet_experiment_url(),
|
||||
trainer_name="Reward",
|
||||
)
|
||||
|
||||
model_card.save(os.path.join(self.args.output_dir, "README.md"))
|
||||
class UnslothRewardTrainer(_UnslothRewardTrainer):
|
||||
"""
|
||||
|
||||
"""
|
||||
def __init__(
|
||||
self,
|
||||
model = None,
|
||||
args = None,
|
||||
data_collator = None,
|
||||
train_dataset = None,
|
||||
eval_dataset = None,
|
||||
processing_class = None,
|
||||
model_init = None,
|
||||
compute_metrics = None,
|
||||
callbacks = None,
|
||||
preprocess_logits_for_metrics = None,
|
||||
peft_config = None,
|
||||
**kwargs
|
||||
):
|
||||
if args is None: args = UnslothRewardConfig()
|
||||
use_bf16 = getattr(args, 'bf16', False)
|
||||
use_fp16 = getattr(args, 'fp16', False)
|
||||
force_float32 = False
|
||||
if os.environ.get('UNSLOTH_FORCE_FLOAT32', '0') == '1':
|
||||
print('Unsloth: Switching to float32 training since model cannot work with float16')
|
||||
force_float32 = True
|
||||
mixed_precision_dtype = os.environ.get('UNSLOTH_MIXED_PRECISION', 'float32')
|
||||
dtype = getattr(model.config, 'torch_dtype', None)
|
||||
if dtype is None: dtype = model.get_input_embeddings().dtype
|
||||
from unsloth_zoo.utils import _get_dtype
|
||||
dtype = _get_dtype(dtype)
|
||||
float16 = dtype == torch.float16
|
||||
if not force_float32 and (float16 and use_bf16): raise TypeError('Unsloth: Model is in float16 precision but you want to use bfloat16 precision. Set fp16 to `True` and bf16 to `False`')
|
||||
if not force_float32 and (not float16 and use_fp16): raise TypeError('Unsloth: Model is in bfloat16 precision but you want to use float16 precision. Set fp16 to `False` and bf16 to `True`')
|
||||
if force_float32:
|
||||
args.fp16 = False
|
||||
args.bf16 = False
|
||||
os.environ['ACCELERATE_MIXED_PRECISION'] = 'no'
|
||||
elif (not use_bf16 and not use_fp16) and mixed_precision_dtype == 'float32':
|
||||
args.fp16 = float16
|
||||
args.bf16 = not float16
|
||||
os.environ['ACCELERATE_MIXED_PRECISION'] = 'fp16' if float16 else 'bf16'
|
||||
if getattr(args, 'eval_dataset', None) is not None and getattr(args, 'eval_strategy', 'no') == 'no':
|
||||
args.eval_strategy = 'steps'
|
||||
if getattr(args, 'eval_steps', None) is None: args.eval_steps = 0.1
|
||||
ga_steps = getattr(args, 'gradient_accumulation_steps', None)
|
||||
if ga_steps is not None and ga_steps > 1:
|
||||
from transformers import __version__ as transformers_version
|
||||
if Version(transformers_version) <= Version('4.45.2'):
|
||||
print('**** Unsloth: Please use our fixed gradient_accumulation_steps by updating transformers, TRL and Unsloth!\n'
|
||||
'`pip install --upgrade --no-cache-dir --force-reinstall --no-deps unsloth transformers trl unsloth_zoo`')
|
||||
if getattr(args, 'eval_strategy', 'no') != 'no':
|
||||
eval_bsz = getattr(args, 'per_device_eval_batch_size', 8)
|
||||
if eval_bsz == 8 and args.per_device_train_batch_size < eval_bsz: args.per_device_eval_batch_size = args.per_device_train_batch_size
|
||||
if getattr(args, 'eval_accumulation_steps', None) is None and ga_steps is not None: args.eval_accumulation_steps = ga_steps
|
||||
fp16_full_eval = getattr(args, 'fp16_full_eval', False)
|
||||
bf16_full_eval = getattr(args, 'bf16_full_eval', False)
|
||||
if args.fp16 and bf16_full_eval: args.bf16_full_eval = False; args.fp16_full_eval = True
|
||||
if args.bf16 and fp16_full_eval: args.bf16_full_eval = True; args.fp16_full_eval = False
|
||||
if force_float32:
|
||||
args.bf16_full_eval = False
|
||||
args.fp16_full_eval = False
|
||||
elif os.environ.get('UNSLOTH_MIXED_PRECISION', 'float32') == 'bfloat16':
|
||||
args.bf16_full_eval = True
|
||||
args.fp16_full_eval = False
|
||||
elif not bf16_full_eval and not fp16_full_eval:
|
||||
args.bf16_full_eval = args.bf16
|
||||
args.fp16_full_eval = args.fp16
|
||||
_output_logits = False
|
||||
if locals().get('compute_metrics', None) is not None: _output_logits = True
|
||||
if locals().get('preprocess_logits_for_metrics', None) is not None: _output_logits = True
|
||||
if _output_logits:
|
||||
os.environ['UNSLOTH_RETURN_LOGITS'] = '1'
|
||||
if 'max_seq_length' not in locals() and not hasattr(args, 'max_seq_length'):
|
||||
pass
|
||||
else:
|
||||
model_max_seq_length = getattr(model, 'max_seq_length', None)
|
||||
args_max_seq_length = getattr(args, 'max_seq_length', None)
|
||||
if args_max_seq_length is None and model_max_seq_length is not None:
|
||||
max_seq_length = model.max_seq_length
|
||||
if hasattr(args, 'max_seq_length'): args.max_seq_length = max_seq_length
|
||||
if model is not None and hasattr(model, 'for_training'):
|
||||
model.for_training()
|
||||
if 'tokenizer' in locals() and hasattr(tokenizer, 'padding_side'): tokenizer.padding_side = 'right'
|
||||
if 'processing_class' in locals():
|
||||
if hasattr(processing_class, 'padding_side'): processing_class.padding_side = 'right'
|
||||
if hasattr(processing_class, 'tokenizer') and hasattr(processing_class.tokenizer, 'padding_side'): processing_class.tokenizer.padding_side = 'right'
|
||||
__tokenizer = processing_class if 'processing_class' in locals() else tokenizer
|
||||
from unsloth_zoo.vision_utils import UnslothVisionDataCollator
|
||||
if not isinstance(data_collator, UnslothVisionDataCollator):
|
||||
if isinstance(data_collator, DataCollatorForSeq2Seq) and 'labels' not in train_dataset.column_names:
|
||||
data_collator = TransformersDataCollatorForLanguageModeling(__tokenizer, mlm = False, mlm_probability = 0.0)
|
||||
elif isinstance(data_collator, TransformersDataCollatorForLanguageModeling) and 'labels' in train_dataset.column_names:
|
||||
data_collator = DataCollatorForSeq2Seq(__tokenizer)
|
||||
else:
|
||||
if hasattr(args, 'remove_unused_columns'): args.remove_unused_columns = False
|
||||
if hasattr(args, 'dataset_text_field'): args.dataset_text_field = ''
|
||||
if hasattr(args, 'dataset_kwargs'): args.dataset_kwargs = {'skip_prepare_dataset': True}
|
||||
if not isinstance(data_collator, UnslothVisionDataCollator):
|
||||
if not hasattr(__tokenizer, 'pad') and hasattr(__tokenizer, 'tokenizer'):
|
||||
if isinstance(data_collator, DataCollatorForSeq2Seq):
|
||||
data_collator = DataCollatorForSeq2Seq(__tokenizer.tokenizer)
|
||||
else:
|
||||
data_collator = TransformersDataCollatorForLanguageModeling(__tokenizer.tokenizer, mlm = False, mlm_probability = 0.0)
|
||||
other_metrics = []
|
||||
|
||||
from unsloth_zoo.logging_utils import PatchRLStatistics
|
||||
PatchRLStatistics('reward_trainer', other_metrics)
|
||||
|
||||
super().__init__(
|
||||
model = model,
|
||||
args = args,
|
||||
data_collator = data_collator,
|
||||
train_dataset = train_dataset,
|
||||
eval_dataset = eval_dataset,
|
||||
processing_class = processing_class,
|
||||
model_init = model_init,
|
||||
compute_metrics = compute_metrics,
|
||||
callbacks = callbacks,
|
||||
preprocess_logits_for_metrics = preprocess_logits_for_metrics,
|
||||
peft_config = peft_config,**kwargs)
|
||||
if hasattr(self, 'neftune_hook_handle'):
|
||||
self.neftune_hook_handle.remove()
|
||||
if hasattr(self, 'neftune_hook_handle'): del self.neftune_hook_handle
|
||||
if getattr(args, 'neftune_noise_alpha', None) is not None:
|
||||
model.get_input_embeddings().neftune_noise_alpha = self.neftune_noise_alpha
|
||||
pass
|
||||
|
||||
pass
|
||||
Reference in New Issue
Block a user