from unsloth import FastLanguageModel import torch from trl import SFTTrainer from transformers import TrainingArguments from unsloth import is_bfloat16_supported max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally! dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+ load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False. # 4bit pre quantized models we support for 4x faster downloading + no OOMs. fourbit_models = [ "unsloth/Meta-Llama-3.1-8B-bnb-4bit", # Llama-3.1 15 trillion tokens model 2x faster! "unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit", "unsloth/Meta-Llama-3.1-70B-bnb-4bit", "unsloth/Meta-Llama-3.1-405B-bnb-4bit", # We also uploaded 4bit for 405b! "unsloth/Mistral-Nemo-Base-2407-bnb-4bit", # New Mistral 12b 2x faster! "unsloth/Mistral-Nemo-Instruct-2407-bnb-4bit", "unsloth/mistral-7b-v0.3-bnb-4bit", # Mistral v3 2x faster! "unsloth/mistral-7b-instruct-v0.3-bnb-4bit", "unsloth/Phi-3.5-mini-instruct", # Phi-3.5 2x faster! "unsloth/Phi-3-medium-4k-instruct", "unsloth/gemma-2-9b-bnb-4bit", "unsloth/gemma-2-27b-bnb-4bit", # Gemma 2x faster! ] # More models at https://huggingface.co/unsloth model, tokenizer = FastLanguageModel.from_pretrained( model_name = "unsloth/Meta-Llama-3.1-8B", max_seq_length = max_seq_length, dtype = dtype, load_in_4bit = load_in_4bit, # token = "hf_...", # use one if using gated models like meta-llama/Llama-2-7b-hf ) model = FastLanguageModel.get_peft_model( model, r = 16, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128 target_modules = ["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj",], lora_alpha = 16, lora_dropout = 0, # Supports any, but = 0 is optimized bias = "none", # Supports any, but = "none" is optimized # [NEW] "unsloth" uses 30% less VRAM, fits 2x larger batch sizes! use_gradient_checkpointing = "unsloth", # True or "unsloth" for very long context random_state = 3407, use_rslora = False, # We support rank stabilized LoRA loftq_config = None, # And LoftQ ) alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. ### Instruction: {} ### Input: {} ### Response: {}""" EOS_TOKEN = tokenizer.eos_token # Must add EOS_TOKEN def formatting_prompts_func(examples): instructions = examples["instruction"] inputs = examples["input"] outputs = examples["output"] texts = [] for instruction, input, output in zip(instructions, inputs, outputs): # Must add EOS_TOKEN, otherwise your generation will go on forever! text = alpaca_prompt.format(instruction, input, output) + EOS_TOKEN texts.append(text) return { "text" : texts, } pass from datasets import load_dataset dataset = load_dataset(path = "/home/alexander/GitHub/finetune", data_files="trainingsdata.jsonl", split="train") dataset = dataset.map(formatting_prompts_func, batched = True) trainer = SFTTrainer( model = model, tokenizer = tokenizer, train_dataset = dataset, dataset_text_field = "text", max_seq_length = max_seq_length, dataset_num_proc = 2, packing = False, # Can make training 5x faster for short sequences. args = TrainingArguments( per_device_train_batch_size = 2, gradient_accumulation_steps = 4, warmup_steps = 5, # num_train_epochs = 1, # Set this for 1 full training run. max_steps = 120, learning_rate = 2e-4, fp16 = not is_bfloat16_supported(), bf16 = is_bfloat16_supported(), logging_steps = 1, optim = "adamw_8bit", weight_decay = 0.01, lr_scheduler_type = "linear", seed = 3407, output_dir = "outputs", report_to = "none", # Use this for WandB etc ), ) t_data = trainer.train() model.save_pretrained("lora_model_2") # Local saving tokenizer.save_pretrained("lora_model_2") # Merge to 16bit if True: model.save_pretrained_merged("model_16_2", tokenizer, save_method = "merged_16bit",) if False: model.push_to_hub_merged("hf/model", tokenizer, save_method = "merged_16bit", token = "") # Merge to 4bit #if True: model.save_pretrained_merged("model", tokenizer, save_method = "merged_4bit",) if False: model.push_to_hub_merged("hf/model", tokenizer, save_method = "merged_4bit", token = "") # Just LoRA adapters if True: model.save_pretrained("model_2") tokenizer.save_pretrained("model_2") if True: model.save_pretrained_gguf("finetunedmodel_2", tokenizer,)