1277 lines
61 KiB
Python
1277 lines
61 KiB
Python
"""
|
|
2025.6.1
|
|
2025.6.2
|
|
4.52.4
|
|
0.18.2
|
|
__UNSLOTH_VERSIONING__
|
|
"""
|
|
from torch import Tensor
|
|
import torch
|
|
import torch.nn as nn
|
|
from torch.nn import functional as F
|
|
from trl.trainer.online_dpo_trainer import (Any, BaseImageProcessor, BasePairwiseJudge, Callable, DPODataCollatorWithPadding, DataCollator, DataLoader, Dataset, EvalPrediction, F, FeatureExtractionMixin, GenerationConfig, IterableDataset, OnlineDPOConfig, OnlineDPOTrainer, OptimizerNames, Optional, PREFIX_CHECKPOINT_DIR, PeftModel, PreTrainedModel, PreTrainedTokenizerBase, ProcessorMixin, SIMPLE_CHAT_TEMPLATE, Trainer, TrainerCallback, Union, apply_chat_template, create_reference_model, datasets, disable_dropout_in_model, empty_cache, generate_model_card, get_comet_experiment_url, get_reward, is_conversational, is_peft_available, is_wandb_available, jinja2, logging, maybe_apply_chat_template, nn, np, os, prepare_deepspeed, seed_worker, textwrap, torch, transformers, truncate_right, unwrap_model_for_generation, version, warnings, wraps, F, is_conversational, os, torch)
|
|
|
|
|
|
import os
|
|
from typing import *
|
|
from dataclasses import dataclass, field
|
|
from packaging.version import Version
|
|
import torch
|
|
import numpy as np
|
|
from contextlib import nullcontext
|
|
from torch.nn import functional as F
|
|
from transformers import DataCollatorForSeq2Seq, DataCollatorForLanguageModeling as TransformersDataCollatorForLanguageModeling
|
|
|
|
torch_compile_options = {
|
|
"epilogue_fusion" : True,
|
|
"max_autotune" : False,
|
|
"shape_padding" : True,
|
|
"trace.enabled" : False,
|
|
"triton.cudagraphs" : False,
|
|
}
|
|
|
|
@torch.compile(dynamic = True, fullgraph = True, options = torch_compile_options,)
|
|
def selective_log_softmax(logits, index):
|
|
logits = logits.to(torch.float32)
|
|
selected_logits = torch.gather(logits, dim = -1, index = index.unsqueeze(-1)).squeeze(-1)
|
|
# loop to reduce peak mem consumption
|
|
# logsumexp_values = torch.stack([torch.logsumexp(lg, dim=-1) for lg in logits])
|
|
logsumexp_values = torch.logsumexp(logits, dim = -1)
|
|
per_token_logps = selected_logits - logsumexp_values # log_softmax(x_i) = x_i - logsumexp(x)
|
|
return per_token_logps
|
|
def vLLMSamplingParams(**kwargs):
|
|
from vllm import SamplingParams
|
|
sampling_params = SamplingParams(**kwargs)
|
|
sampling_params._set_kwargs = kwargs
|
|
return sampling_params
|
|
@dataclass
|
|
class UnslothOnlineDPOConfig(OnlineDPOConfig):
|
|
"""
|
|
|
|
Configuration class for the [`OnlineDPOTrainer`].
|
|
|
|
Using [`~transformers.HfArgumentParser`] we can turn this class into
|
|
[argparse](https://docs.python.org/3/library/argparse#module-argparse) arguments that can be specified on the
|
|
command line.
|
|
|
|
Parameters:
|
|
learning_rate (`float`, *optional*, defaults to `5e-7`):
|
|
Initial learning rate for [`AdamW`] optimizer. The default value replaces that of
|
|
[`~transformers.TrainingArguments`].
|
|
reward_model_path (`str` or `None`, *optional*, defaults to `None`):
|
|
Path to the reward model. Either `judge` or `reward_model_path` must be set, but not both.
|
|
judge (`str` or `None`, *optional*, defaults to `None`):
|
|
Name of the judge to use. Either `judge` or `reward_model_path` must be set, but not both.
|
|
max_new_tokens (`int`, *optional*, defaults to `64`):
|
|
Maximum number of tokens to generate per completion.
|
|
max_length (`int`, *optional*, defaults to `256`):
|
|
Maximum total length of the sequence (prompt + completion) used to compute log probabilities. If the
|
|
sequence exceeds this limit, the leftmost tokens will be truncated to preserve as much of the completion as
|
|
possible.
|
|
temperature (`float`, *optional*, defaults to `0.9`):
|
|
Temperature for sampling. The higher the temperature, the more random the completions.
|
|
missing_eos_penalty (`float` or `None`, *optional*, defaults to `None`):
|
|
Penalty applied to the score when the model fails to generate an EOS token. This is useful to encourage
|
|
to generate completions shorter than the maximum length (`max_new_tokens`). The penalty must be a positive
|
|
value.
|
|
beta (`float` or `list[float]`, *optional*, defaults to `0.1`):
|
|
Parameter controlling the deviation from the reference model. Higher β means less deviation from the
|
|
reference model. For the IPO loss (`loss_type="ipo"`), β is the regularization parameter denoted by τ in
|
|
the [paper](https://huggingface.co/papers/2310.12036). If a list of floats is provided then the β is
|
|
selected for each new epoch and the last β is used for the rest of the epochs.
|
|
loss_type (`str`, *optional*, defaults to `"sigmoid"`):
|
|
Type of loss to use. Possible values are:
|
|
|
|
- `"sigmoid"`: sigmoid loss from the original [DPO](https://huggingface.co/papers/2305.18290) paper.
|
|
- `"ipo"`: IPO loss from the [IPO](https://huggingface.co/papers/2310.12036) paper.
|
|
|
|
dataset_num_proc (`int` or `None`, *optional*, defaults to `None`):
|
|
Number of processes to use for processing the dataset.
|
|
disable_dropout (`bool`, *optional*, defaults to `True`):
|
|
Whether to disable dropout in the model and reference model.
|
|
use_vllm (`bool`, *optional*, defaults to `False`):
|
|
Whether to use vLLM for generating completions. Requires vLLM to be installed (`pip install vllm`).
|
|
gpu_memory_utilization (`float`, *optional*, defaults to `0.55`):
|
|
The vLLM memory utilization. The default value is 0.55.
|
|
ds3_gather_for_generation (`bool`, *optional*, defaults to `True`):
|
|
This setting applies to DeepSpeed ZeRO-3. If enabled, the policy model weights are gathered for generation,
|
|
improving generation speed. However, disabling this option allows training models that exceed the VRAM
|
|
capacity of a single GPU, albeit at the cost of slower generation.
|
|
|
|
"""
|
|
vllm_sampling_params: Optional[Any] = field(
|
|
default = None,
|
|
metadata = {'help': 'vLLM SamplingParams'},
|
|
)
|
|
unsloth_num_chunks : Optional[int] = field(
|
|
default = -1,
|
|
metadata = {'help': 'Chunk size to reduce memory usage. -1 is most efficient.'},
|
|
)
|
|
def __init__(
|
|
self,
|
|
output_dir = None,
|
|
overwrite_output_dir = None,
|
|
do_train = False,
|
|
do_eval = False,
|
|
do_predict = False,
|
|
eval_strategy = 'no',
|
|
prediction_loss_only = False,
|
|
per_device_train_batch_size = 4,
|
|
per_device_eval_batch_size = 4,
|
|
per_gpu_train_batch_size = None,
|
|
per_gpu_eval_batch_size = None,
|
|
gradient_accumulation_steps = 2,
|
|
eval_accumulation_steps = 2,
|
|
eval_delay = 0,
|
|
torch_empty_cache_steps = 250,
|
|
learning_rate = 5e-05,
|
|
weight_decay = 0.01,
|
|
adam_beta1 = 0.9,
|
|
adam_beta2 = 0.999,
|
|
adam_epsilon = 1e-08,
|
|
max_grad_norm = 1.0,
|
|
num_train_epochs = 3.0,
|
|
max_steps = -1,
|
|
lr_scheduler_type = 'linear',
|
|
warmup_ratio = 0.1,
|
|
warmup_steps = 0,
|
|
log_level = 'passive',
|
|
log_level_replica = 'warning',
|
|
log_on_each_node = True,
|
|
logging_dir = None,
|
|
logging_strategy = 'steps',
|
|
logging_first_step = False,
|
|
logging_steps = 1,
|
|
logging_nan_inf_filter = False,
|
|
save_strategy = 'steps',
|
|
save_steps = 500,
|
|
save_total_limit = None,
|
|
save_safetensors = True,
|
|
save_on_each_node = False,
|
|
save_only_model = False,
|
|
restore_callback_states_from_checkpoint = False,
|
|
no_cuda = False,
|
|
use_cpu = False,
|
|
use_mps_device = False,
|
|
seed = 3407,
|
|
data_seed = 3407,
|
|
jit_mode_eval = False,
|
|
use_ipex = False,
|
|
bf16 = False,
|
|
fp16 = False,
|
|
fp16_opt_level = 'O1',
|
|
half_precision_backend = 'auto',
|
|
bf16_full_eval = False,
|
|
fp16_full_eval = False,
|
|
tf32 = None,
|
|
local_rank = -1,
|
|
ddp_backend = None,
|
|
tpu_num_cores = None,
|
|
tpu_metrics_debug = False,
|
|
debug = '',
|
|
dataloader_drop_last = False,
|
|
eval_steps = None,
|
|
dataloader_num_workers = 0,
|
|
dataloader_prefetch_factor = None,
|
|
past_index = -1,
|
|
run_name = None,
|
|
disable_tqdm = None,
|
|
remove_unused_columns = True,
|
|
label_names = None,
|
|
load_best_model_at_end = False,
|
|
metric_for_best_model = None,
|
|
greater_is_better = None,
|
|
ignore_data_skip = False,
|
|
fsdp = '',
|
|
fsdp_min_num_params = 0,
|
|
fsdp_config = None,
|
|
fsdp_transformer_layer_cls_to_wrap = None,
|
|
accelerator_config = None,
|
|
deepspeed = None,
|
|
label_smoothing_factor = 0.0,
|
|
optim = 'adamw_8bit',
|
|
optim_args = None,
|
|
adafactor = False,
|
|
group_by_length = False,
|
|
length_column_name = 'length',
|
|
report_to = None,
|
|
ddp_find_unused_parameters = None,
|
|
ddp_bucket_cap_mb = None,
|
|
ddp_broadcast_buffers = None,
|
|
dataloader_pin_memory = True,
|
|
dataloader_persistent_workers = False,
|
|
skip_memory_metrics = True,
|
|
use_legacy_prediction_loop = False,
|
|
push_to_hub = False,
|
|
resume_from_checkpoint = None,
|
|
hub_model_id = None,
|
|
hub_strategy = 'every_save',
|
|
hub_token = None,
|
|
hub_private_repo = None,
|
|
hub_always_push = False,
|
|
gradient_checkpointing = False,
|
|
gradient_checkpointing_kwargs = None,
|
|
include_inputs_for_metrics = False,
|
|
eval_do_concat_batches = True,
|
|
fp16_backend = 'auto',
|
|
push_to_hub_model_id = None,
|
|
push_to_hub_organization = None,
|
|
push_to_hub_token = None,
|
|
mp_parameters = '',
|
|
auto_find_batch_size = False,
|
|
full_determinism = False,
|
|
torchdynamo = None,
|
|
ray_scope = 'last',
|
|
ddp_timeout = 1800,
|
|
torch_compile = False,
|
|
torch_compile_backend = None,
|
|
torch_compile_mode = None,
|
|
include_tokens_per_second = False,
|
|
include_num_input_tokens_seen = False,
|
|
neftune_noise_alpha = None,
|
|
optim_target_modules = None,
|
|
batch_eval_metrics = False,
|
|
eval_on_start = False,
|
|
use_liger_kernel = False,
|
|
eval_use_gather_object = False,
|
|
average_tokens_across_devices = False,
|
|
reward_model_path = None,
|
|
judge = None,
|
|
max_new_tokens = 64,
|
|
max_length = 512,
|
|
temperature = 0.9,
|
|
missing_eos_penalty = None,
|
|
loss_type = 'sigmoid',
|
|
dataset_num_proc = None,
|
|
disable_dropout = True,
|
|
use_vllm = False,
|
|
gpu_memory_utilization = 0.55,
|
|
ds3_gather_for_generation = True,
|
|
vllm_sampling_params = None,
|
|
unsloth_num_chunks = -1,
|
|
**kwargs,
|
|
):
|
|
if learning_rate < 1e-7: raise FloatingPointError(f'Unsloth: Your learning rate of `{learning_rate}` is too small and less than 1e-7! Consider increasing it, otherwise gradient updates will be close to 0!')
|
|
if learning_rate > 1: raise OverflowError(f'Unsloth: Your learning rate of `{learning_rate}` is way too larger > 1! Consider decreasing it to 1e-1, otherwise gradient updates will explode!')
|
|
if output_dir is None and save_strategy == 'steps' and save_steps == 500:
|
|
output_dir = 'unsloth_training_checkpoints'
|
|
save_strategy = 'no'
|
|
if dataset_num_proc is None:
|
|
from multiprocessing import cpu_count
|
|
dataset_num_proc = cpu_count()
|
|
|
|
super().__init__(
|
|
output_dir = output_dir,
|
|
overwrite_output_dir = overwrite_output_dir,
|
|
do_train = do_train,
|
|
do_eval = do_eval,
|
|
do_predict = do_predict,
|
|
eval_strategy = eval_strategy,
|
|
prediction_loss_only = prediction_loss_only,
|
|
per_device_train_batch_size = per_device_train_batch_size,
|
|
per_device_eval_batch_size = per_device_eval_batch_size,
|
|
per_gpu_train_batch_size = per_gpu_train_batch_size,
|
|
per_gpu_eval_batch_size = per_gpu_eval_batch_size,
|
|
gradient_accumulation_steps = gradient_accumulation_steps,
|
|
eval_accumulation_steps = eval_accumulation_steps,
|
|
eval_delay = eval_delay,
|
|
torch_empty_cache_steps = torch_empty_cache_steps,
|
|
learning_rate = learning_rate,
|
|
weight_decay = weight_decay,
|
|
adam_beta1 = adam_beta1,
|
|
adam_beta2 = adam_beta2,
|
|
adam_epsilon = adam_epsilon,
|
|
max_grad_norm = max_grad_norm,
|
|
num_train_epochs = num_train_epochs,
|
|
max_steps = max_steps,
|
|
lr_scheduler_type = lr_scheduler_type,
|
|
warmup_ratio = warmup_ratio,
|
|
warmup_steps = warmup_steps,
|
|
log_level = log_level,
|
|
log_level_replica = log_level_replica,
|
|
log_on_each_node = log_on_each_node,
|
|
logging_dir = logging_dir,
|
|
logging_strategy = logging_strategy,
|
|
logging_first_step = logging_first_step,
|
|
logging_steps = logging_steps,
|
|
logging_nan_inf_filter = logging_nan_inf_filter,
|
|
save_strategy = save_strategy,
|
|
save_steps = save_steps,
|
|
save_total_limit = save_total_limit,
|
|
save_safetensors = save_safetensors,
|
|
save_on_each_node = save_on_each_node,
|
|
save_only_model = save_only_model,
|
|
restore_callback_states_from_checkpoint = restore_callback_states_from_checkpoint,
|
|
no_cuda = no_cuda,
|
|
use_cpu = use_cpu,
|
|
use_mps_device = use_mps_device,
|
|
seed = seed,
|
|
data_seed = data_seed,
|
|
jit_mode_eval = jit_mode_eval,
|
|
use_ipex = use_ipex,
|
|
bf16 = bf16,
|
|
fp16 = fp16,
|
|
fp16_opt_level = fp16_opt_level,
|
|
half_precision_backend = half_precision_backend,
|
|
bf16_full_eval = bf16_full_eval,
|
|
fp16_full_eval = fp16_full_eval,
|
|
tf32 = tf32,
|
|
local_rank = local_rank,
|
|
ddp_backend = ddp_backend,
|
|
tpu_num_cores = tpu_num_cores,
|
|
tpu_metrics_debug = tpu_metrics_debug,
|
|
debug = debug,
|
|
dataloader_drop_last = dataloader_drop_last,
|
|
eval_steps = eval_steps,
|
|
dataloader_num_workers = dataloader_num_workers,
|
|
dataloader_prefetch_factor = dataloader_prefetch_factor,
|
|
past_index = past_index,
|
|
run_name = run_name,
|
|
disable_tqdm = disable_tqdm,
|
|
remove_unused_columns = remove_unused_columns,
|
|
label_names = label_names,
|
|
load_best_model_at_end = load_best_model_at_end,
|
|
metric_for_best_model = metric_for_best_model,
|
|
greater_is_better = greater_is_better,
|
|
ignore_data_skip = ignore_data_skip,
|
|
fsdp = fsdp,
|
|
fsdp_min_num_params = fsdp_min_num_params,
|
|
fsdp_config = fsdp_config,
|
|
fsdp_transformer_layer_cls_to_wrap = fsdp_transformer_layer_cls_to_wrap,
|
|
accelerator_config = accelerator_config,
|
|
deepspeed = deepspeed,
|
|
label_smoothing_factor = label_smoothing_factor,
|
|
optim = optim,
|
|
optim_args = optim_args,
|
|
adafactor = adafactor,
|
|
group_by_length = group_by_length,
|
|
length_column_name = length_column_name,
|
|
report_to = report_to,
|
|
ddp_find_unused_parameters = ddp_find_unused_parameters,
|
|
ddp_bucket_cap_mb = ddp_bucket_cap_mb,
|
|
ddp_broadcast_buffers = ddp_broadcast_buffers,
|
|
dataloader_pin_memory = dataloader_pin_memory,
|
|
dataloader_persistent_workers = dataloader_persistent_workers,
|
|
skip_memory_metrics = skip_memory_metrics,
|
|
use_legacy_prediction_loop = use_legacy_prediction_loop,
|
|
push_to_hub = push_to_hub,
|
|
resume_from_checkpoint = resume_from_checkpoint,
|
|
hub_model_id = hub_model_id,
|
|
hub_strategy = hub_strategy,
|
|
hub_token = hub_token,
|
|
hub_private_repo = hub_private_repo,
|
|
hub_always_push = hub_always_push,
|
|
gradient_checkpointing = gradient_checkpointing,
|
|
gradient_checkpointing_kwargs = gradient_checkpointing_kwargs,
|
|
include_inputs_for_metrics = include_inputs_for_metrics,
|
|
eval_do_concat_batches = eval_do_concat_batches,
|
|
fp16_backend = fp16_backend,
|
|
push_to_hub_model_id = push_to_hub_model_id,
|
|
push_to_hub_organization = push_to_hub_organization,
|
|
push_to_hub_token = push_to_hub_token,
|
|
mp_parameters = mp_parameters,
|
|
auto_find_batch_size = auto_find_batch_size,
|
|
full_determinism = full_determinism,
|
|
torchdynamo = torchdynamo,
|
|
ray_scope = ray_scope,
|
|
ddp_timeout = ddp_timeout,
|
|
torch_compile = torch_compile,
|
|
torch_compile_backend = torch_compile_backend,
|
|
torch_compile_mode = torch_compile_mode,
|
|
include_tokens_per_second = include_tokens_per_second,
|
|
include_num_input_tokens_seen = include_num_input_tokens_seen,
|
|
neftune_noise_alpha = neftune_noise_alpha,
|
|
optim_target_modules = optim_target_modules,
|
|
batch_eval_metrics = batch_eval_metrics,
|
|
eval_on_start = eval_on_start,
|
|
use_liger_kernel = use_liger_kernel,
|
|
eval_use_gather_object = eval_use_gather_object,
|
|
average_tokens_across_devices = average_tokens_across_devices,
|
|
reward_model_path = reward_model_path,
|
|
judge = judge,
|
|
max_new_tokens = max_new_tokens,
|
|
max_length = max_length,
|
|
temperature = temperature,
|
|
missing_eos_penalty = missing_eos_penalty,
|
|
loss_type = loss_type,
|
|
dataset_num_proc = dataset_num_proc,
|
|
disable_dropout = disable_dropout,
|
|
use_vllm = use_vllm,
|
|
gpu_memory_utilization = gpu_memory_utilization,
|
|
ds3_gather_for_generation = ds3_gather_for_generation,**kwargs)
|
|
self.vllm_sampling_params = vllm_sampling_params
|
|
self.unsloth_num_chunks = unsloth_num_chunks
|
|
pass
|
|
|
|
class _UnslothOnlineDPOTrainer(Trainer):
|
|
r""""""
|
|
|
|
_tag_names = ["trl", "online-dpo"]
|
|
|
|
def __init__(
|
|
self,
|
|
model: Union[PreTrainedModel, nn.Module],
|
|
ref_model: Union[PreTrainedModel, nn.Module, None] = None,
|
|
reward_model: Union[PreTrainedModel, nn.Module, None] = None,
|
|
judge: Optional[BasePairwiseJudge] = None,
|
|
args: Optional[OnlineDPOConfig] = None,
|
|
data_collator: Optional[DataCollator] = None,
|
|
train_dataset: Optional[Union[Dataset, IterableDataset, "datasets.Dataset"]] = None,
|
|
eval_dataset: Optional[Union[Dataset, dict[str, Dataset], "datasets.Dataset"]] = None,
|
|
processing_class: Optional[
|
|
Union[PreTrainedTokenizerBase, BaseImageProcessor, FeatureExtractionMixin, ProcessorMixin]
|
|
] = None,
|
|
reward_processing_class: Optional[PreTrainedTokenizerBase] = None,
|
|
peft_config: Optional[dict] = None,
|
|
compute_metrics: Optional[Callable[[EvalPrediction], dict]] = None,
|
|
callbacks: Optional[list[TrainerCallback]] = None,
|
|
optimizers: tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (None, None),
|
|
preprocess_logits_for_metrics: Optional[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = None,
|
|
) -> None:
|
|
|
|
if hasattr(model, 'vllm_engine') and hasattr(args, 'use_vllm'):
|
|
if (getattr(args, 'use_vllm', False) == False):
|
|
args.use_vllm = True
|
|
if ref_model is model:
|
|
raise ValueError(
|
|
"`model` and `ref_model` cannot be the same object. If you want `ref_model` to be the "
|
|
"same as `model`, either omit the `ref_model` argument or pass `None`."
|
|
)
|
|
|
|
self.ref_model = ref_model
|
|
|
|
if reward_model is not None and judge is not None:
|
|
warnings.warn(
|
|
"Both `reward_model` and `judge` are provided. Please choose provide only one of them. "
|
|
"Ignoring `judge` and using `reward_model`.",
|
|
UserWarning,
|
|
)
|
|
judge = None
|
|
elif reward_model is None and judge is None:
|
|
raise ValueError("Either `reward_model` or `judge` must be provided.")
|
|
|
|
self.reward_model = reward_model
|
|
self.reward_processing_class = reward_processing_class
|
|
self.judge = judge
|
|
self.is_encoder_decoder = model.config.is_encoder_decoder
|
|
|
|
if args.missing_eos_penalty is not None and judge is not None:
|
|
raise ValueError("`missing_eos_penalty` is not supported when `judge` is provided.")
|
|
|
|
if args is None:
|
|
raise ValueError("`args` must be provided.")
|
|
|
|
# Check that the processing_class is provided
|
|
if processing_class is None:
|
|
raise ValueError("`processing_class` must be provided.")
|
|
|
|
# Convert to PEFT model if peft_config is provided
|
|
if False:
|
|
# Check if PEFT is available
|
|
if not is_peft_available():
|
|
raise ImportError(
|
|
"PEFT is not available and passed `peft_config`. Please install PEFT with "
|
|
"`pip install peft` to use it."
|
|
)
|
|
|
|
# If the model is already a PeftModel, we need to merge and unload it.
|
|
# Further information here: https://huggingface.co/docs/trl/dpo_trainer#reference-model-considerations-with-peft
|
|
if isinstance(model, PeftModel):
|
|
model = model.merge_and_unload()
|
|
|
|
# Get peft model with the given config
|
|
model = model
|
|
|
|
# Disable dropout in the model and reference model
|
|
if args.disable_dropout:
|
|
disable_dropout_in_model(model)
|
|
if self.ref_model is not None:
|
|
disable_dropout_in_model(self.ref_model)
|
|
|
|
# Handle the ref_model
|
|
# Usually, the user wants the ref model to be the initial version of the model. When using PEFT, it's easy to
|
|
# get the ref model, as it's just the model with a disabled adapter. When not using PEFT, we need to create
|
|
# the ref model from the model by copying it and disable the gradients and set it in evaluation mode.
|
|
if ref_model is None: # No ref model provided, the most common case
|
|
if False:
|
|
self.ref_model = create_reference_model(model) # copy, disable gradients, set eval mode
|
|
else:
|
|
self.ref_model = None # we don't need a ref model here, we can just disable the adapter.
|
|
else: # rare case, the user provided a ref model
|
|
self.ref_model = ref_model
|
|
self.ref_model.eval()
|
|
|
|
# Disable the gradient and set the reward model in eval mode
|
|
if self.reward_model is not None:
|
|
self.reward_model.eval()
|
|
|
|
# Define the collator is not provided
|
|
if data_collator is None:
|
|
data_collator = DPODataCollatorWithPadding(pad_token_id=processing_class.pad_token_id)
|
|
|
|
self.max_length = args.max_length
|
|
|
|
self.stats = {
|
|
"objective/kl": [],
|
|
"objective/entropy": [],
|
|
"objective/non_score_reward": [],
|
|
"rewards/chosen": [],
|
|
"rewards/rejected": [],
|
|
"rewards/accuracies": [],
|
|
"rewards/margins": [],
|
|
"logps/chosen": [],
|
|
"logps/rejected": [],
|
|
"val/contain_eos_token": [],
|
|
"beta": [],
|
|
}
|
|
if self.reward_model is not None:
|
|
self.stats["objective/rlhf_reward"] = []
|
|
self.stats["objective/scores_margin"] = []
|
|
self.stats["objective/scores"] = []
|
|
|
|
if args.use_vllm:
|
|
self.llm = model.vllm_engine; self._last_loaded_step = 0; self.generation_config = SamplingParams(
|
|
n=2,
|
|
max_tokens=args.max_new_tokens,
|
|
temperature=args.temperature,
|
|
top_k=50,
|
|
top_p=1.0,
|
|
detokenize=False,
|
|
**getattr(getattr(args, 'vllm_sampling_params', vLLMSamplingParams()), '_set_kwargs', {}),
|
|
)
|
|
else:
|
|
self.generation_config = GenerationConfig(
|
|
max_new_tokens=args.max_new_tokens,
|
|
temperature=args.temperature,
|
|
top_k=50,
|
|
top_p=1.0,
|
|
do_sample=True,
|
|
use_cache=False if args.gradient_checkpointing else True,
|
|
)
|
|
|
|
# The trainer estimates the number of FLOPs (floating-point operations) using the number of elements in the
|
|
# input tensor associated with the key "input_ids". However, in Online DPO, the sampled data does not include
|
|
# the "input_ids" key. As a result, the trainer issues the warning: "Could not estimate the number of tokens
|
|
# of the input, floating-point operations will not be computed." To suppress this warning, we set the
|
|
# "estimate_tokens" key in the model's "warnings_issued" dictionary to True. This acts as a flag to indicate
|
|
# that the warning has already been issued.
|
|
model.warnings_issued["estimate_tokens"] = True
|
|
|
|
super().__init__(
|
|
model=model,
|
|
args=args,
|
|
data_collator=data_collator,
|
|
train_dataset=train_dataset,
|
|
eval_dataset=eval_dataset,
|
|
processing_class=processing_class,
|
|
compute_metrics=compute_metrics,
|
|
callbacks=callbacks,
|
|
optimizers=optimizers,
|
|
preprocess_logits_for_metrics=preprocess_logits_for_metrics,
|
|
)
|
|
|
|
# Add tags for models that have been loaded with the correct transformers version
|
|
if hasattr(self.model, "add_model_tags"):
|
|
self.model.add_model_tags(self._tag_names)
|
|
|
|
self._beta = args.beta
|
|
|
|
# Placed after the super().__init__ because we need self.is_deepspeed_enabled and self.accelerator
|
|
if self.is_deepspeed_enabled:
|
|
if self.reward_model is not None:
|
|
self.reward_model = prepare_deepspeed(
|
|
self.reward_model, args.per_device_train_batch_size, args.fp16, args.bf16
|
|
)
|
|
if self.ref_model is not None:
|
|
self.ref_model = prepare_deepspeed(
|
|
self.ref_model, args.per_device_train_batch_size, args.fp16, args.bf16
|
|
)
|
|
else:
|
|
if self.ref_model is not None:
|
|
self.ref_model = self.ref_model.to(self.accelerator.device)
|
|
if self.reward_model is not None:
|
|
self.reward_model = self.reward_model.to(self.accelerator.device)
|
|
|
|
@property
|
|
def beta(self):
|
|
if isinstance(self._beta, list):
|
|
epoch = self.state.epoch
|
|
return self._beta[epoch] if epoch < len(self._beta) else self._beta[-1]
|
|
else:
|
|
return self._beta
|
|
|
|
@staticmethod
|
|
def tokenize_row(feature, is_encoder_decoder: bool, tokenizer: PreTrainedTokenizerBase) -> dict[str, Any]:
|
|
"""Tokenize a single row from a DPO specific dataset."""
|
|
if not is_encoder_decoder:
|
|
batch = tokenizer(feature["prompt"], add_special_tokens=False)
|
|
# Add BOS token to head of prompt. Avoid adding if it's already there
|
|
if tokenizer.bos_token_id is not None:
|
|
prompt_len_input_ids = len(batch["input_ids"])
|
|
if prompt_len_input_ids == 0 or tokenizer.bos_token_id != batch["input_ids"][0]:
|
|
batch["input_ids"] = [tokenizer.bos_token_id] + batch["input_ids"]
|
|
batch["attention_mask"] = [1] + batch["attention_mask"]
|
|
else:
|
|
batch = tokenizer(feature["prompt"], add_special_tokens=True)
|
|
batch = {f"prompt_{key}": value for key, value in batch.items()}
|
|
return batch
|
|
|
|
# Same as Trainer.get_train_dataloader but skip the "remove_unused_columns".
|
|
@wraps(Trainer.get_train_dataloader)
|
|
def get_train_dataloader(self) -> DataLoader:
|
|
if self.train_dataset is None:
|
|
raise ValueError("Trainer: training requires a train_dataset.")
|
|
|
|
train_dataset = self.train_dataset
|
|
data_collator = self.data_collator
|
|
dataloader_params = {
|
|
"batch_size": self._train_batch_size,
|
|
"collate_fn": data_collator,
|
|
"num_workers": self.args.dataloader_num_workers,
|
|
"pin_memory": self.args.dataloader_pin_memory,
|
|
"persistent_workers": self.args.dataloader_persistent_workers,
|
|
}
|
|
|
|
if not isinstance(train_dataset, torch.utils.data.IterableDataset):
|
|
dataloader_params["sampler"] = self._get_train_sampler()
|
|
dataloader_params["drop_last"] = self.args.dataloader_drop_last
|
|
dataloader_params["worker_init_fn"] = seed_worker
|
|
dataloader_params["prefetch_factor"] = self.args.dataloader_prefetch_factor
|
|
|
|
return self.accelerator.prepare(DataLoader(train_dataset, **dataloader_params))
|
|
|
|
# Same as Trainer.get_eval_dataloader but skip the "remove_unused_columns".
|
|
@wraps(Trainer.get_eval_dataloader)
|
|
def get_eval_dataloader(self, eval_dataset: Optional[Union[str, Dataset]] = None) -> DataLoader:
|
|
if eval_dataset is None and self.eval_dataset is None:
|
|
raise ValueError("Trainer: evaluation requires an eval_dataset.")
|
|
|
|
# If we have persistent workers, don't do a fork bomb especially as eval datasets
|
|
# don't change during training
|
|
dataloader_key = eval_dataset if isinstance(eval_dataset, str) else "eval"
|
|
if (
|
|
hasattr(self, "_eval_dataloaders")
|
|
and dataloader_key in self._eval_dataloaders
|
|
and self.args.dataloader_persistent_workers
|
|
):
|
|
return self.accelerator.prepare(self._eval_dataloaders[dataloader_key])
|
|
|
|
eval_dataset = (
|
|
self.eval_dataset[eval_dataset]
|
|
if isinstance(eval_dataset, str)
|
|
else eval_dataset
|
|
if eval_dataset is not None
|
|
else self.eval_dataset
|
|
)
|
|
data_collator = self.data_collator
|
|
|
|
dataloader_params = {
|
|
"batch_size": self.args.eval_batch_size,
|
|
"collate_fn": data_collator,
|
|
"num_workers": self.args.dataloader_num_workers,
|
|
"pin_memory": self.args.dataloader_pin_memory,
|
|
"persistent_workers": self.args.dataloader_persistent_workers,
|
|
}
|
|
|
|
if not isinstance(eval_dataset, torch.utils.data.IterableDataset):
|
|
dataloader_params["sampler"] = self._get_eval_sampler(eval_dataset)
|
|
dataloader_params["drop_last"] = self.args.dataloader_drop_last
|
|
dataloader_params["prefetch_factor"] = self.args.dataloader_prefetch_factor
|
|
|
|
# accelerator.free_memory() will destroy the references, so
|
|
# we need to store the non-prepared version
|
|
eval_dataloader = DataLoader(eval_dataset, **dataloader_params)
|
|
if self.args.dataloader_persistent_workers:
|
|
if hasattr(self, "_eval_dataloaders"):
|
|
self._eval_dataloaders[dataloader_key] = eval_dataloader
|
|
else:
|
|
self._eval_dataloaders = {dataloader_key: eval_dataloader}
|
|
|
|
return self.accelerator.prepare(eval_dataloader)
|
|
|
|
def _generate_vllm(self, model, prompts):
|
|
eos_token_id = self.processing_class.eos_token_id
|
|
pad_token_id = self.processing_class.pad_token_id
|
|
|
|
# Load the latest weights
|
|
|
|
pass
|
|
|
|
pass
|
|
|
|
if is_conversational({"prompt": prompts[0]}):
|
|
outputs = self.llm.chat(prompts, self.generation_config, use_tqdm=False, lora_request = self.model.load_lora('online_dpo_trainer_lora_model', load_tensors = True))
|
|
else:
|
|
outputs = self.llm.generate(prompts, self.generation_config, use_tqdm=False, lora_request = self.model.load_lora('online_dpo_trainer_lora_model', load_tensors = True))
|
|
|
|
completion_ids = [list(output.outputs[i].token_ids) for i in range(2) for output in outputs]
|
|
prompt_ids = [list(output.prompt_token_ids) for _ in range(2) for output in outputs]
|
|
|
|
# Create mask and pad the prompt and completion
|
|
max_prompt_length = max(len(ids) for ids in prompt_ids)
|
|
prompt_mask = [[0] * (max_prompt_length - len(ids)) + [1] * len(ids) for ids in prompt_ids]
|
|
prompt_ids = [[pad_token_id] * (max_prompt_length - len(ids)) + ids for ids in prompt_ids]
|
|
max_tokens = self.generation_config.max_tokens
|
|
completion_mask = [[1] * len(ids) + [0] * (max_tokens - len(ids)) for ids in completion_ids]
|
|
completion_ids = [
|
|
ids + [eos_token_id] if ids[-1] != eos_token_id and len(ids) < max_tokens else ids
|
|
for ids in completion_ids
|
|
]
|
|
completion_ids = [ids + [pad_token_id] * (max_tokens - len(ids)) for ids in completion_ids]
|
|
|
|
# Convert to tensors
|
|
prompt_ids = torch.tensor(prompt_ids, device=self.accelerator.device)
|
|
prompt_mask = torch.tensor(prompt_mask, device=self.accelerator.device)
|
|
completion_ids = torch.tensor(completion_ids, device=self.accelerator.device)
|
|
completion_mask = torch.tensor(completion_mask, device=self.accelerator.device)
|
|
|
|
return prompt_ids, prompt_mask, completion_ids, completion_mask
|
|
|
|
def _generate(self, model, prompts):
|
|
eos_token_id = self.processing_class.eos_token_id
|
|
pad_token_id = self.processing_class.pad_token_id
|
|
|
|
# Apply chat template and tokenize the input. We do this on-the-fly to enable the use of reward models and
|
|
# policies with different tokenizers / chat templates.
|
|
inputs = [{"prompt": prompt} for prompt in prompts]
|
|
inputs = [maybe_apply_chat_template(x, self.processing_class) for x in inputs]
|
|
inputs = [self.tokenize_row(x, self.is_encoder_decoder, self.processing_class) for x in inputs]
|
|
inputs = self.data_collator(inputs)
|
|
|
|
# Sample 2 completions per prompt of size `max_new_tokens` from the model
|
|
inputs = self._prepare_inputs(inputs)
|
|
prompt_ids = inputs["prompt_input_ids"].repeat(2, 1)
|
|
prompt_mask = inputs["prompt_attention_mask"].repeat(2, 1)
|
|
with unwrap_model_for_generation(
|
|
model, self.accelerator, gather_deepspeed3_params=self.args.ds3_gather_for_generation
|
|
) as unwrapped_model:
|
|
output = unwrapped_model.generate(
|
|
input_ids=prompt_ids,
|
|
attention_mask=prompt_mask,
|
|
generation_config=self.generation_config,
|
|
)
|
|
|
|
completion_ids = output[:, prompt_ids.size(1) :]
|
|
completion_ids, completion_mask = truncate_right(completion_ids, eos_token_id, pad_token_id)
|
|
|
|
return prompt_ids, prompt_mask, completion_ids, completion_mask
|
|
|
|
def _forward(self, model, prompt_ids, prompt_mask, completion_ids, completion_mask):
|
|
# Get the number of tokens to truncate from prompt
|
|
num_tokens_to_truncate = max(prompt_ids.size(1) + completion_ids.size(1) - self.max_length, 0)
|
|
|
|
# Truncate left to avoid oom
|
|
prompt_ids = prompt_ids[:, num_tokens_to_truncate:]
|
|
prompt_mask = prompt_mask[:, num_tokens_to_truncate:]
|
|
|
|
# Concat the prompt and completion
|
|
prompt_completion_ids = torch.cat((prompt_ids, completion_ids), dim=1)
|
|
prompt_completion_mask = torch.cat((prompt_mask, completion_mask), dim=1)
|
|
|
|
# Get the logprobs of the completions from the model
|
|
output = model(prompt_completion_ids, attention_mask=prompt_completion_mask)
|
|
|
|
# There is 1 offset, because the model predict the next token
|
|
logits = output.logits[:, prompt_ids.size(1) - 1 : -1]
|
|
|
|
# Take the completion tokens logprob
|
|
logprobs = torch.take_along_dim(logits.log_softmax(dim=-1), completion_ids.unsqueeze(-1), dim=2).squeeze(-1)
|
|
return logprobs
|
|
|
|
def training_step(
|
|
self, model: nn.Module, inputs: dict[str, Union[torch.Tensor, Any]], num_items_in_batch: Optional[int] = None
|
|
) -> torch.Tensor:
|
|
model.train()
|
|
|
|
prompts = inputs["prompt"]
|
|
batch_size = len(prompts)
|
|
|
|
if self.args.use_vllm:
|
|
prompt_ids, prompt_mask, completion_ids, completion_mask = self._generate_vllm(model, prompts)
|
|
else:
|
|
prompt_ids, prompt_mask, completion_ids, completion_mask = self._generate(model, prompts)
|
|
|
|
contain_eos_token = torch.any(completion_ids == self.processing_class.eos_token_id, dim=-1)
|
|
|
|
logprobs = self._forward(model, prompt_ids, prompt_mask, completion_ids, completion_mask)
|
|
with torch.no_grad():
|
|
if self.ref_model is not None:
|
|
ref_logprobs = self._forward(self.ref_model, prompt_ids, prompt_mask, completion_ids, completion_mask)
|
|
else: # peft case: we just need to disable the adapter
|
|
with self.model.disable_adapter():
|
|
ref_logprobs = self._forward(self.model, prompt_ids, prompt_mask, completion_ids, completion_mask)
|
|
|
|
# Decode the completions, and format them if the input is conversational
|
|
device = logprobs.device
|
|
completions = self.processing_class.batch_decode(completion_ids, skip_special_tokens=True)
|
|
if is_conversational({"prompt": prompts[0]}):
|
|
completions = [[{"role": "assistant", "content": completion}] for completion in completions]
|
|
|
|
# Get the reward from the reward model or judge
|
|
if self.judge is not None:
|
|
# Once formatted, conversational data may contain special tokens (such as <|im_start|>) that are not
|
|
# directly understandable by the judge and could alter its judgment. To avoid this and make the judge
|
|
# independent of the model's chat template, we use the raw conversation data, and apply our own chat
|
|
# template to it.
|
|
if is_conversational({"prompt": prompts[0]}):
|
|
environment = jinja2.Environment()
|
|
template = environment.from_string(SIMPLE_CHAT_TEMPLATE)
|
|
prompts = [template.render(messages=prompt) for prompt in prompts]
|
|
completions = [template.render(messages=completion) for completion in completions]
|
|
|
|
ranks_of_first_completion = self.judge.judge(
|
|
prompts, list(zip(completions[:batch_size], completions[batch_size:]))
|
|
)
|
|
|
|
# convert ranks to a True/False mask:
|
|
# when rank == 0, it means the first completion is the best
|
|
# when rank == 1, it means the second completion is the best
|
|
mask = torch.tensor([rank == 0 for rank in ranks_of_first_completion], device=device)
|
|
else:
|
|
# The reward model may not have the same chat template or tokenizer as the model, so we need to use the
|
|
# raw data (string), apply the chat template (if needed), and tokenize it with the reward processing class.
|
|
prompts = 2 * prompts # repeat the prompt: [prompt0, prompt1] -> [prompt0, prompt1, prompt0, prompt1]
|
|
if is_conversational({"prompt": prompts[0]}):
|
|
examples = [{"prompt": p, "completion": c} for p, c in zip(prompts, completions)]
|
|
examples = [apply_chat_template(example, self.reward_processing_class) for example in examples]
|
|
prompts = [example["prompt"] for example in examples]
|
|
completions = [example["completion"] for example in examples]
|
|
|
|
# Tokenize the prompts
|
|
prompts_ids = self.reward_processing_class(
|
|
prompts, padding=True, return_tensors="pt", padding_side="left"
|
|
)["input_ids"].to(device)
|
|
context_length = prompts_ids.shape[1]
|
|
|
|
# Tokenize the completions
|
|
completions_ids = self.reward_processing_class(
|
|
completions, padding=True, return_tensors="pt", padding_side="right"
|
|
)["input_ids"].to(device)
|
|
|
|
# Concatenate the prompts and completions and get the reward
|
|
prompt_completion_ids = torch.cat((prompts_ids, completions_ids), dim=1)
|
|
with torch.inference_mode():
|
|
_, scores, _ = get_reward(
|
|
self.reward_model, prompt_completion_ids, self.reward_processing_class.pad_token_id, context_length
|
|
)
|
|
|
|
# Filter completion. Ensure that the sample contains stop_token_id
|
|
# Completions not passing that filter will receive a lower score.
|
|
if self.args.missing_eos_penalty is not None:
|
|
scores[~contain_eos_token] -= self.args.missing_eos_penalty
|
|
|
|
# Split the scores in 2 (the prompts of the first half are the same as the second half)
|
|
first_half, second_half = scores.split(batch_size)
|
|
|
|
# Get the indices of the chosen and rejected examples
|
|
mask = first_half >= second_half
|
|
|
|
batch_range = torch.arange(batch_size, device=device)
|
|
chosen_indices = batch_range + (~mask * batch_size)
|
|
rejected_indices = batch_range + (mask * batch_size)
|
|
|
|
# Build tensor so that the first half is the chosen examples and the second half the rejected examples
|
|
cr_indices = torch.cat((chosen_indices, rejected_indices), dim=0) # cr = chosen and rejected
|
|
cr_logprobs = logprobs[cr_indices]
|
|
cr_ref_logprobs = ref_logprobs[cr_indices]
|
|
|
|
# mask out the padding tokens
|
|
padding_mask = ~completion_mask.bool()
|
|
cr_padding_mask = padding_mask[cr_indices]
|
|
|
|
cr_logprobs_sum = (cr_logprobs * ~cr_padding_mask).sum(1)
|
|
cr_ref_logprobs_sum = (cr_ref_logprobs * ~cr_padding_mask).sum(1)
|
|
|
|
# Split the chosen and rejected examples
|
|
chosen_logprobs_sum, rejected_logprobs_sum = torch.split(cr_logprobs_sum, batch_size)
|
|
chosen_ref_logprobs_sum, rejected_ref_logprobs_sum = torch.split(cr_ref_logprobs_sum, batch_size)
|
|
pi_logratios = chosen_logprobs_sum - rejected_logprobs_sum
|
|
ref_logratios = chosen_ref_logprobs_sum - rejected_ref_logprobs_sum
|
|
|
|
logits = pi_logratios - ref_logratios
|
|
|
|
if self.args.loss_type == "sigmoid":
|
|
losses = -F.logsigmoid(self.beta * logits)
|
|
elif self.args.loss_type == "ipo":
|
|
losses = (logits - 1 / (2 * self.beta)) ** 2
|
|
else:
|
|
raise NotImplementedError(f"invalid loss type {self.loss_type}")
|
|
|
|
loss = losses.mean()
|
|
|
|
# Log everything
|
|
if self.reward_model is not None:
|
|
scores_margin = scores[chosen_indices] - scores[rejected_indices]
|
|
self.stats["objective/scores_margin"].append(
|
|
self.accelerator.gather_for_metrics(scores_margin.mean()).mean().item()
|
|
)
|
|
self.stats["objective/scores"].append(self.accelerator.gather_for_metrics(scores.mean()).mean().item())
|
|
self.stats["val/contain_eos_token"].append(contain_eos_token.float().mean().item())
|
|
self.stats["logps/chosen"].append(self.accelerator.gather_for_metrics(chosen_logprobs_sum).mean().item())
|
|
self.stats["logps/rejected"].append(self.accelerator.gather_for_metrics(rejected_logprobs_sum).mean().item())
|
|
|
|
kl = logprobs - ref_logprobs
|
|
mean_kl = kl.sum(1).mean()
|
|
self.stats["objective/kl"].append(self.accelerator.gather_for_metrics(mean_kl).mean().item())
|
|
non_score_reward = (-self.beta * kl).sum(1)
|
|
mean_non_score_reward = non_score_reward.mean()
|
|
self.stats["objective/non_score_reward"].append(
|
|
self.accelerator.gather_for_metrics(mean_non_score_reward).mean().item()
|
|
)
|
|
if self.reward_model is not None:
|
|
rlhf_reward = scores + non_score_reward
|
|
self.stats["objective/rlhf_reward"].append(self.accelerator.gather_for_metrics(rlhf_reward).mean().item())
|
|
mean_entropy = -logprobs.sum(1).mean()
|
|
self.stats["objective/entropy"].append(self.accelerator.gather_for_metrics(mean_entropy).mean().item())
|
|
chosen_rewards = self.beta * (chosen_logprobs_sum - chosen_ref_logprobs_sum)
|
|
gathered_chosen_rewards = self.accelerator.gather_for_metrics(chosen_rewards)
|
|
self.stats["rewards/chosen"].append(gathered_chosen_rewards.mean().item())
|
|
rejected_rewards = self.beta * (rejected_logprobs_sum - rejected_ref_logprobs_sum)
|
|
gathered_rejected_rewards = self.accelerator.gather_for_metrics(rejected_rewards)
|
|
self.stats["rewards/rejected"].append(gathered_rejected_rewards.mean().item())
|
|
margin = gathered_chosen_rewards - gathered_rejected_rewards
|
|
self.stats["rewards/margins"].append(margin.mean().item())
|
|
accuracy = margin > 0
|
|
self.stats["rewards/accuracies"].append(accuracy.float().mean().item())
|
|
self.stats["beta"].append(self.beta)
|
|
|
|
if (
|
|
self.args.torch_empty_cache_steps is not None
|
|
and self.state.global_step % self.args.torch_empty_cache_steps == 0
|
|
):
|
|
empty_cache()
|
|
|
|
kwargs = {}
|
|
|
|
# For LOMO optimizers you need to explicitly use the learnign rate
|
|
if self.args.optim in [OptimizerNames.LOMO, OptimizerNames.ADALOMO]:
|
|
kwargs["learning_rate"] = self._get_learning_rate()
|
|
|
|
if self.args.n_gpu > 1:
|
|
loss = loss.mean() # mean() to average on multi-gpu parallel training
|
|
|
|
if self.use_apex:
|
|
with amp.scale_loss(loss, self.optimizer) as scaled_loss:
|
|
scaled_loss.backward()
|
|
else:
|
|
self.accelerator.backward(loss, **kwargs)
|
|
|
|
return loss.detach() / self.args.gradient_accumulation_steps
|
|
|
|
# Same as Trainer._maybe_log_save_evaluate but log our metrics
|
|
# start_time defaults to None to allow compatibility with transformers<=4.46
|
|
def _maybe_log_save_evaluate(
|
|
self, tr_loss, grad_norm, model, trial, epoch, ignore_keys_for_eval, start_time=None, learning_rate=None
|
|
):
|
|
if self.control.should_log and self.state.global_step > self._globalstep_last_logged:
|
|
logs: dict[str, float] = {}
|
|
|
|
# all_gather + mean() to get average loss over all processes
|
|
tr_loss_scalar = self._nested_gather(tr_loss).mean().item()
|
|
|
|
# reset tr_loss to zero
|
|
tr_loss -= tr_loss
|
|
|
|
logs["loss"] = round(tr_loss_scalar / (self.state.global_step - self._globalstep_last_logged), 4)
|
|
if grad_norm is not None:
|
|
logs["grad_norm"] = grad_norm.detach().item() if isinstance(grad_norm, torch.Tensor) else grad_norm
|
|
if learning_rate is not None:
|
|
logs["learning_rate"] = learning_rate
|
|
else:
|
|
logs["learning_rate"] = self._get_learning_rate()
|
|
|
|
# Add our metrics
|
|
for key, val in self.stats.items():
|
|
logs[key] = sum(val) / len(val)
|
|
self.stats = {key: [] for key in self.stats} # reset stats
|
|
|
|
self._total_loss_scalar += tr_loss_scalar
|
|
self._globalstep_last_logged = self.state.global_step
|
|
self.store_flos()
|
|
|
|
if version.parse(transformers.__version__) >= version.parse("4.47.0.dev0"):
|
|
self.log(logs, start_time)
|
|
else: # transformers<=4.46
|
|
self.log(logs)
|
|
|
|
metrics = None
|
|
if self.control.should_evaluate:
|
|
metrics = self._evaluate(trial, ignore_keys_for_eval)
|
|
is_new_best_metric = self._determine_best_metric(metrics=metrics, trial=trial)
|
|
|
|
if self.args.save_strategy == "best":
|
|
self.control.should_save = is_new_best_metric
|
|
|
|
if self.control.should_save:
|
|
self._save_checkpoint(model, trial)
|
|
self.control = self.callback_handler.on_save(self.args, self.state, self.control)
|
|
|
|
# Copy-pasted from transformers.Trainer to maintain compatibility with earlier versions.
|
|
# This can be removed once the minimum transformers version is updated to 4.47.
|
|
# Refer to https://github.com/huggingface/trl/pull/2288 for more details.
|
|
def _determine_best_metric(self, metrics, trial):
|
|
"""
|
|
Determine if the model should be saved based on the evaluation metrics.
|
|
If args.metric_for_best_model is not set, the loss is used.
|
|
Returns:
|
|
bool: True if a new best metric was found, else False
|
|
"""
|
|
is_new_best_metric = False
|
|
|
|
if self.args.metric_for_best_model is not None:
|
|
metric_to_check = self.args.metric_for_best_model
|
|
|
|
if not metric_to_check.startswith("eval_"):
|
|
metric_to_check = f"eval_{metric_to_check}"
|
|
|
|
try:
|
|
metric_value = metrics[metric_to_check]
|
|
except KeyError as exc:
|
|
raise KeyError(
|
|
f"The `metric_for_best_model` training argument is set to '{metric_to_check}', which is not found in the evaluation metrics. "
|
|
f"The available evaluation metrics are: {list(metrics.keys())}. Consider changing the `metric_for_best_model` via the TrainingArguments."
|
|
) from exc
|
|
|
|
operator = np.greater if self.args.greater_is_better else np.less
|
|
|
|
if self.state.best_metric is None:
|
|
self.state.best_metric = float("-inf") if self.args.greater_is_better else float("inf")
|
|
|
|
if operator(metric_value, self.state.best_metric):
|
|
run_dir = self._get_output_dir(trial=trial)
|
|
checkpoint_folder = f"{PREFIX_CHECKPOINT_DIR}-{self.state.global_step}"
|
|
output_dir = os.path.join(run_dir, checkpoint_folder)
|
|
self.state.best_metric = metric_value
|
|
self.state.best_model_checkpoint = output_dir
|
|
|
|
is_new_best_metric = True
|
|
|
|
return is_new_best_metric
|
|
|
|
def create_model_card(
|
|
self,
|
|
model_name: Optional[str] = None,
|
|
dataset_name: Optional[str] = None,
|
|
tags: Union[str, list[str], None] = None,
|
|
):
|
|
"""
|
|
Creates a draft of a model card using the information available to the `Trainer`.
|
|
|
|
Args:
|
|
model_name (`str` or `None`, *optional*, defaults to `None`):
|
|
Name of the model.
|
|
dataset_name (`str` or `None`, *optional*, defaults to `None`):
|
|
Name of the dataset used for training.
|
|
tags (`str`, `list[str]` or `None`, *optional*, defaults to `None`):
|
|
Tags to be associated with the model card.
|
|
"""
|
|
if not self.is_world_process_zero():
|
|
return
|
|
|
|
if hasattr(self.model.config, "_name_or_path") and not os.path.isdir(self.model.config._name_or_path):
|
|
base_model = self.model.config._name_or_path
|
|
else:
|
|
base_model = None
|
|
|
|
tags = tags or []
|
|
if isinstance(tags, str):
|
|
tags = [tags]
|
|
|
|
if hasattr(self.model.config, "unsloth_version"):
|
|
tags.append("unsloth")
|
|
|
|
citation = textwrap.dedent("""\
|
|
@article{guo2024direct,
|
|
title = {{Direct Language Model Alignment from Online AI Feedback}},
|
|
author = {Shangmin Guo and Biao Zhang and Tianlin Liu and Tianqi Liu and Misha Khalman and Felipe Llinares and Alexandre Ram{\'{e}} and Thomas Mesnard and Yao Zhao and Bilal Piot and Johan Ferret and Mathieu Blondel},
|
|
year = 2024,
|
|
eprint = {arXiv:2402.04792}
|
|
}""")
|
|
|
|
model_card = generate_model_card(
|
|
base_model=base_model,
|
|
model_name=model_name,
|
|
hub_model_id=self.hub_model_id,
|
|
dataset_name=dataset_name,
|
|
tags=tags,
|
|
wandb_url=wandb.run.get_url() if is_wandb_available() and wandb.run is not None else None,
|
|
comet_url=get_comet_experiment_url(),
|
|
trainer_name="Online DPO",
|
|
trainer_citation=citation,
|
|
paper_title="Direct Language Model Alignment from Online AI Feedback",
|
|
paper_id="2402.04792",
|
|
)
|
|
model_card.save(os.path.join(self.args.output_dir, "README.md"))
|
|
class UnslothOnlineDPOTrainer(_UnslothOnlineDPOTrainer):
|
|
"""
|
|
|
|
Initialize OnlineDPOTrainer.
|
|
|
|
Args:
|
|
model (`transformers.PreTrainedModel` or `torch.nn.Module`):
|
|
The model to train, preferably an `AutoModelForCausalLM`.
|
|
ref_model (`transformers.PreTrainedModel` or `torch.nn.Module` or `None`):
|
|
The reference model to use for training. If None is specified, the reference model will be created from
|
|
the model.
|
|
reward_model (`transformers.PreTrainedModel` or `torch.nn.Module` or `None`):
|
|
The reward model to score completions with, preferably an `AutoModelForSequenceClassification`.
|
|
judge (`BasePairwiseJudge`):
|
|
The judge to use for pairwise comparison of model completions.
|
|
args (`OnlineDPOConfig`):
|
|
The online DPO config arguments to use for training.
|
|
data_collator (`transformers.DataCollator`):
|
|
The data collator to use for training. If None is specified, the default data collator (`DPODataCollatorWithPadding`) will be used
|
|
which will pad the sequences to the maximum length of the sequences in the batch, given a dataset of paired sequences.
|
|
train_dataset (`datasets.Dataset`):
|
|
The dataset to use for training.
|
|
eval_dataset (`datasets.Dataset`):
|
|
The dataset to use for evaluation.
|
|
processing_class (`PreTrainedTokenizerBase` or `BaseImageProcessor` or `FeatureExtractionMixin` or `ProcessorMixin`, *optional*):
|
|
Processing class used to process the data. If provided, will be used to automatically process the inputs
|
|
for the model, and it will be saved along the model to make it easier to rerun an interrupted training or
|
|
reuse the fine-tuned model.
|
|
peft_config (`dict`):
|
|
The peft config to use for training.
|
|
compute_metrics (`Callable[[EvalPrediction], dict]`, *optional*):
|
|
The function to use to compute the metrics. Must take a `EvalPrediction` and return
|
|
a dictionary string to metric values.
|
|
callbacks (`list[transformers.TrainerCallback]`):
|
|
The callbacks to use for training.
|
|
optimizers (`tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR]`):
|
|
The optimizer and scheduler to use for training.
|
|
preprocess_logits_for_metrics (`Callable[[torch.Tensor, torch.Tensor], torch.Tensor]`):
|
|
The function to use to preprocess the logits before computing the metrics.
|
|
|
|
"""
|
|
def __init__(
|
|
self,
|
|
model,
|
|
ref_model = None,
|
|
reward_model = None,
|
|
judge = None,
|
|
args = None,
|
|
data_collator = None,
|
|
train_dataset = None,
|
|
eval_dataset = None,
|
|
processing_class = None,
|
|
reward_processing_class = None,
|
|
peft_config = None,
|
|
compute_metrics = None,
|
|
callbacks = None,
|
|
preprocess_logits_for_metrics = None,
|
|
**kwargs
|
|
):
|
|
if args is None: args = UnslothOnlineDPOConfig()
|
|
use_bf16 = getattr(args, 'bf16', False)
|
|
use_fp16 = getattr(args, 'fp16', False)
|
|
force_float32 = False
|
|
if os.environ.get('UNSLOTH_FORCE_FLOAT32', '0') == '1':
|
|
print('Unsloth: Switching to float32 training since model cannot work with float16')
|
|
force_float32 = True
|
|
mixed_precision_dtype = os.environ.get('UNSLOTH_MIXED_PRECISION', 'float32')
|
|
dtype = getattr(model.config, 'torch_dtype', None)
|
|
if dtype is None: dtype = model.get_input_embeddings().dtype
|
|
from unsloth_zoo.utils import _get_dtype
|
|
dtype = _get_dtype(dtype)
|
|
float16 = dtype == torch.float16
|
|
if not force_float32 and (float16 and use_bf16): raise TypeError('Unsloth: Model is in float16 precision but you want to use bfloat16 precision. Set fp16 to `True` and bf16 to `False`')
|
|
if not force_float32 and (not float16 and use_fp16): raise TypeError('Unsloth: Model is in bfloat16 precision but you want to use float16 precision. Set fp16 to `False` and bf16 to `True`')
|
|
if force_float32:
|
|
args.fp16 = False
|
|
args.bf16 = False
|
|
os.environ['ACCELERATE_MIXED_PRECISION'] = 'no'
|
|
elif (not use_bf16 and not use_fp16) and mixed_precision_dtype == 'float32':
|
|
args.fp16 = float16
|
|
args.bf16 = not float16
|
|
os.environ['ACCELERATE_MIXED_PRECISION'] = 'fp16' if float16 else 'bf16'
|
|
if getattr(args, 'eval_dataset', None) is not None and getattr(args, 'eval_strategy', 'no') == 'no':
|
|
args.eval_strategy = 'steps'
|
|
if getattr(args, 'eval_steps', None) is None: args.eval_steps = 0.1
|
|
ga_steps = getattr(args, 'gradient_accumulation_steps', None)
|
|
if ga_steps is not None and ga_steps > 1:
|
|
from transformers import __version__ as transformers_version
|
|
if Version(transformers_version) <= Version('4.45.2'):
|
|
print('**** Unsloth: Please use our fixed gradient_accumulation_steps by updating transformers, TRL and Unsloth!\n'
|
|
'`pip install --upgrade --no-cache-dir --force-reinstall --no-deps unsloth transformers trl unsloth_zoo`')
|
|
if getattr(args, 'eval_strategy', 'no') != 'no':
|
|
eval_bsz = getattr(args, 'per_device_eval_batch_size', 8)
|
|
if eval_bsz == 8 and args.per_device_train_batch_size < eval_bsz: args.per_device_eval_batch_size = args.per_device_train_batch_size
|
|
if getattr(args, 'eval_accumulation_steps', None) is None and ga_steps is not None: args.eval_accumulation_steps = ga_steps
|
|
fp16_full_eval = getattr(args, 'fp16_full_eval', False)
|
|
bf16_full_eval = getattr(args, 'bf16_full_eval', False)
|
|
if args.fp16 and bf16_full_eval: args.bf16_full_eval = False; args.fp16_full_eval = True
|
|
if args.bf16 and fp16_full_eval: args.bf16_full_eval = True; args.fp16_full_eval = False
|
|
if force_float32:
|
|
args.bf16_full_eval = False
|
|
args.fp16_full_eval = False
|
|
elif os.environ.get('UNSLOTH_MIXED_PRECISION', 'float32') == 'bfloat16':
|
|
args.bf16_full_eval = True
|
|
args.fp16_full_eval = False
|
|
elif not bf16_full_eval and not fp16_full_eval:
|
|
args.bf16_full_eval = args.bf16
|
|
args.fp16_full_eval = args.fp16
|
|
_output_logits = False
|
|
if locals().get('compute_metrics', None) is not None: _output_logits = True
|
|
if locals().get('preprocess_logits_for_metrics', None) is not None: _output_logits = True
|
|
if _output_logits:
|
|
os.environ['UNSLOTH_RETURN_LOGITS'] = '1'
|
|
if 'max_seq_length' not in locals() and not hasattr(args, 'max_seq_length'):
|
|
pass
|
|
else:
|
|
model_max_seq_length = getattr(model, 'max_seq_length', None)
|
|
args_max_seq_length = getattr(args, 'max_seq_length', None)
|
|
if args_max_seq_length is None and model_max_seq_length is not None:
|
|
max_seq_length = model.max_seq_length
|
|
if hasattr(args, 'max_seq_length'): args.max_seq_length = max_seq_length
|
|
if model is not None and hasattr(model, 'for_training'):
|
|
model.for_training()
|
|
if 'tokenizer' in locals() and hasattr(tokenizer, 'padding_side'): tokenizer.padding_side = 'right'
|
|
if 'processing_class' in locals():
|
|
if hasattr(processing_class, 'padding_side'): processing_class.padding_side = 'right'
|
|
if hasattr(processing_class, 'tokenizer') and hasattr(processing_class.tokenizer, 'padding_side'): processing_class.tokenizer.padding_side = 'right'
|
|
__tokenizer = processing_class if 'processing_class' in locals() else tokenizer
|
|
from unsloth_zoo.vision_utils import UnslothVisionDataCollator
|
|
if not isinstance(data_collator, UnslothVisionDataCollator):
|
|
if isinstance(data_collator, DataCollatorForSeq2Seq) and 'labels' not in train_dataset.column_names:
|
|
data_collator = TransformersDataCollatorForLanguageModeling(__tokenizer, mlm = False, mlm_probability = 0.0)
|
|
elif isinstance(data_collator, TransformersDataCollatorForLanguageModeling) and 'labels' in train_dataset.column_names:
|
|
data_collator = DataCollatorForSeq2Seq(__tokenizer)
|
|
else:
|
|
if hasattr(args, 'remove_unused_columns'): args.remove_unused_columns = False
|
|
if hasattr(args, 'dataset_text_field'): args.dataset_text_field = ''
|
|
if hasattr(args, 'dataset_kwargs'): args.dataset_kwargs = {'skip_prepare_dataset': True}
|
|
if not isinstance(data_collator, UnslothVisionDataCollator):
|
|
if not hasattr(__tokenizer, 'pad') and hasattr(__tokenizer, 'tokenizer'):
|
|
if isinstance(data_collator, DataCollatorForSeq2Seq):
|
|
data_collator = DataCollatorForSeq2Seq(__tokenizer.tokenizer)
|
|
else:
|
|
data_collator = TransformersDataCollatorForLanguageModeling(__tokenizer.tokenizer, mlm = False, mlm_probability = 0.0)
|
|
other_metrics = []
|
|
|
|
from unsloth_zoo.logging_utils import PatchRLStatistics
|
|
PatchRLStatistics('online_dpo_trainer', other_metrics)
|
|
|
|
super().__init__(
|
|
model = model,
|
|
ref_model = ref_model,
|
|
reward_model = reward_model,
|
|
judge = judge,
|
|
args = args,
|
|
data_collator = data_collator,
|
|
train_dataset = train_dataset,
|
|
eval_dataset = eval_dataset,
|
|
processing_class = processing_class,
|
|
reward_processing_class = reward_processing_class,
|
|
peft_config = peft_config,
|
|
compute_metrics = compute_metrics,
|
|
callbacks = callbacks,
|
|
preprocess_logits_for_metrics = preprocess_logits_for_metrics,**kwargs)
|
|
if hasattr(self, 'neftune_hook_handle'):
|
|
self.neftune_hook_handle.remove()
|
|
if hasattr(self, 'neftune_hook_handle'): del self.neftune_hook_handle
|
|
if getattr(args, 'neftune_noise_alpha', None) is not None:
|
|
model.get_input_embeddings().neftune_noise_alpha = self.neftune_noise_alpha
|
|
pass
|
|
|
|
pass
|